38. Sharpness of Parametrices for Strictly Hyperbolic Operators

By Haruki YAMADA

Department of Mathematics, Tokyo Institute of Technology (Communicated by Kôsaku Yosida, M. J. A., April 12, 1982)

1. Introduction. Let P(x, D) be a linear partial differential operator with C^{∞} -coefficients defined in \mathbb{R}^n and strictly hyperbolic with respect to x_1 . Let $\mathbb{E}_k : \mathcal{D}'(Y) \rightarrow \mathcal{D}'(\mathbb{R}^n)$ be k-th parametrices, i.e.

$$P(x,D)\mathbf{E}_k \equiv 0$$
, $D_{x_1}^{m-j}\mathbf{E}_k|_{x_1=0} \equiv \delta_{jk}\mathbf{I}$,

where $Y = \{x \in \mathbb{R}^n ; x_1 = 0\}$ is the initial plane (see e.g. [1]). We want to study the sharpness of distributions $E_k(x, y) := E_k \delta(x - y)$ here we take $y \in Y$ as parameters. If we take

 $\Lambda = \Lambda(y) := \{(x, \xi) \in T^* \mathbf{R}^n; (x, \xi) \text{ is on a bicharacteristic strip through some } (y, \eta) \in T^* \mathbf{R}^n \text{ with } P_m(y, \eta) = 0\},$

$$W = W(y) := \pi \Lambda(y),$$

where $\pi: T^*\mathbf{R}^n \to \mathbf{R}^n$ is the natural projection, then we have sing supp $E_k(x, y) \subset W(y)$.

Now take a point $x^0 \in W$ and a component ω of $\mathbb{R}^n \setminus W$ with $x^0 \in \partial \omega$. Then $E_k(x, y)$ is said to be *sharp* at x^0 from ω if there is a neighbourhood V of x^0 and $u \in C^{\infty}(V)$ such that $E_k(x, y) = u(x)$ on $\omega \cap V$.

Near each point $x^0 \in W$, $E_k(x,y)$ can be represented by a finite sum of paired oscillatory integrals $I^\sigma(a,\varphi,x)$, for which L. Gårding [3] discovered a criterion for sharpness. But his arguments and proofs are rather sketchily and, in part, incomplete. Our aim is to clarify the situation and to give a rigorous proofs when $x^0 \in W$ is a stable point. Here we use

Definition. $x^0 \in W$ is called a stable point if under small perturbations of $A \subset T^*\mathbb{R}^n$ (as conic Lagrangean manifolds) near $\pi^{-1}(x^0)$, the configurations of W cannot be changed off local diffeomorphisms.

Note that our definition of stability may be considered as a *well* posedness for the problem of sharpness.

If $\pi^{-1}(x^0) \cap \Lambda$ consist of regular points (i.e. $N := \dim T_{\lambda^0} \Lambda$ $\cap T_{\lambda^0}(\text{fibre}) = 1$ for $\lambda^0 \in \pi^{-1}(x^0) \cap \Lambda$), an easy criterion for sharpness are given in [4]. So, in what follows, we shall consider the case when $\pi^{-1}(x^0) \cap \Lambda$ contains $irregular\ points$ (i.e. the case when $N \geqslant 2$).

2. Suppose that $\pi^{-1}(x^0) \cap \Lambda$ consist of stable and irregular points. Then we can prove that, as a germ at x^0 , $E_k(x,y)$ can be represented by a finite sum of distributions of the from

$$G_q^{\sigma}(x) = \int_V \chi_q^{\sigma}(\varphi(x,\theta)) d\theta,$$

multiplied by smooth functions. Here $q \in \mathbb{Z}/2$, $\chi_q^{\sigma}(t) = \chi_q(t+i0) + \sigma \chi_q(t-i0)$ and $\sigma = \pm 1$ are determined by the Maslov index. Further $\chi_q(t\pm i0) = \lim_{\epsilon \downarrow 0} \chi_q(t\pm i\epsilon) \in \mathcal{Q}'(\mathbb{R})$ are defined by boundary values on the real axis of the analytic functions

$$\chi_q(z) = egin{cases} \Gamma(-q)e^{-\pi i q}z^q, & q
eq 0, 1, 2, \cdots, \\ z^q(\log z^{-1} + c_q + \pi i)/q!, & q = 0, 1, 2, \cdots, \end{cases}$$

defined on $-\pi < \arg z < \pi$, where $c_q = q^{-1} + c_{q-1}$ and $c_0 = \Gamma'(1)$. Finally $\varphi(x, \theta)$ is a real valued function with dim $\theta = N - 1$ and

$$\Lambda = \{(x, d_x \varphi(x, \theta)); \varphi(x, \theta) = 0, d_\theta \varphi(x, \theta) = 0\}$$
 near λ^0 ,

where $\lambda^0 \in \pi^{-1}(x^0) \cap \Lambda$ and V is a neighbourhood of θ^0 where $\lambda^0 = (x^0, d_x \varphi(x^0, \theta^0))$.

Now we shall study the integral (*). We can assume, without loss of generality, that $(x^0, \theta^0) = (0, 0)$. Further we can prove that if $\varphi(x, \theta)$ is stable, there is a local diffeomorphism $(\tilde{x}, \tilde{\theta})$ near $(0, 0) \in \mathbb{R}^n \times \mathbb{R}^{N-1}$ with $\tilde{x} = \tilde{x}(x)$, $\tilde{\theta} = \tilde{\theta}(x, \theta)$ such that $G_q^{\sigma}(x)$ can be represented by

$$\int_{\mathcal{F}} \chi_q^{\sigma}(\tilde{\varphi}(\tilde{x},\tilde{\theta})) d\tilde{\theta}$$

multiplied by a smooth function, where $\tilde{\varphi}(\tilde{x}, \tilde{\theta})$ is a function of the form

(**)
$$\tilde{\varphi}(\tilde{x},\tilde{\theta}) = f_0(\tilde{\theta}) + \sum_{j=1}^{k-1} \tilde{x}_j f_j(\tilde{\theta}) + \tilde{x}_k.$$

Here $f_j(\tilde{\theta})$ $(j=0,1,\dots,k-1)$ are certain polynomials of $\tilde{\theta}$ (see e.g. [2]). Thus in what follows we shall assume that $\varphi(x,\theta)$ has the form (**).

In the following we shall consider the case when $q \in \mathbb{Z}$. The case when q is a half integer will be treated similarly. By studying the zeros of the equation $\varphi(x,\theta)+i\varepsilon=0$ for small ε , we have

Lemma 1. Take a neighbourhood X of x=0 small enough. Then, for any fixed $x \in X \setminus W$, there is a small $\varepsilon_0 > 0$ and a C^{∞} -vector field $V \ni \theta \mapsto v(x,\theta;\varepsilon) \in \mathbb{R}^{N-1}$ such that (i) $v(x,\theta;0) \equiv 0$, (ii) $\varphi(x,\theta+iv(x,\theta;\varepsilon)) \neq 0$ for all ε with $0 < \varepsilon \le \varepsilon_0$ and (iii) $d_{\theta}\varphi(x,\theta+iv(x,\theta;\varepsilon)) \cdot ((dv(x,\theta;\varepsilon))/d\varepsilon)|_{\varepsilon=0} > 0$.

Further we have

Lemma 2. For any fixed $x \in X \setminus W$, there is a neighbourhood U of x such that (i) $\varphi(y, \theta + iv(x, \theta; \varepsilon)) \neq 0$ and (ii) $d_{\theta}\varphi(y, \theta + iv(x, \theta; \varepsilon)) \cdot ((dv(x, \theta; \varepsilon))/d\varepsilon)|_{\varepsilon=0} > 0$ for all $y \in U$.

By Lemma 1, if $x \in X \setminus W$, we can represent $G_q^{\sigma}(x)$ as

$$G_q^{\sigma}(x) = \int_{T_{\sigma}(x)} \chi_q^{\sigma}(\varphi(x,\theta)) d\theta,$$

where $\gamma_{\sigma}(x)$ is an (N-1)-chain with natural orientation in a complex neighbourhood $\hat{V} \subset \mathbb{C}^{N-1}$ of $V \subset \mathbb{R}^{N-1}$ determined by $v(x, \theta; \varepsilon)$ and σ . Further, by Lemma 2, we have

$$G_q^{\sigma}(y) = \int_{Y_{\sigma}(x)} \chi_q^{\sigma}(\varphi(y, \theta)) d\theta$$
 for all $y \in U$.

Especially we have that $G_q^{\sigma}(x)$ is analytic in $X \setminus W$. Using this expression, we can make a criterion for sharpness of $G_q^{\sigma}(x)$ in terms of the chain $\gamma_{\sigma}(x)$ or its homology class.

3. Let us fix a complex neighbourhood $\hat{V} \subset \mathbb{C}^{N-1}$ of $V \subset \mathbb{R}^{N-1}$ and take $X \subset \mathbb{R}^k$ as a small neighbourhood of the origin. Note that, though X may depend on V, (*) defines the same germs at the origin modulo analytic functions as long as V contains the origin.

For fixed $x \in X$, we write

$$V_x := \hat{V} \setminus \{\theta ; \varphi(x,\theta) = 0\}, \qquad \delta V_x := \partial \hat{V} \setminus \{\theta ; \varphi(x,\theta) = 0\}.$$

Then for each $x \in X \setminus W$, the chain $\gamma_{\sigma}(x)$ determines an (N-1)-th relative homology class $\alpha(x;\sigma) := [\gamma_{\sigma}(x)] \in H_{N-1}(V_x, \delta V_x)$.

Next we take a point $x^0 \in W$ and a component ω of $X \setminus W$. Further take a smooth path $\ell = \{x_t; 0 \le t \le 1\}$ in $\overline{\omega}$ with an end point $x^0 = x_t|_{t=0}$ such that $\ell \cap \partial \omega = \{x^0\}$. Then we can formulate our criterion for sharpness.

Theorem 1. $G_q^{\sigma}(x)$ is sharp at x^0 from ω if there is a relative cycle γ in X such that (i) $[\gamma] \in H_{N-1}(V_{x^0}, \delta V_{x^0})$ and (ii) $[\gamma] = [\gamma_{\sigma}(x_t)]$ in $H_{N-1}(V_{x_t}, \delta V_{x_t})$ for every sufficiently small t > 0.

We call the condition (i) and (ii) of Theorem 1 the $local\ Petrowsky$ condition.

Now we return to the problem for the distributions $E_{\mathbf{k}}(x,y)$ themselves. Then we have

Theorem 2. Take $x^0 \in W$ and a curve ℓ with an end point x^0 in a component ω of $\mathbb{R}^n \backslash W$. Suppose that all the points in $\pi^{-1}(x^0) \cap \Lambda$ are stable points. Then there associate 1-parameter families of relative homology groups as above such that the local Petrowsky condition implies the sharpness of $E_k(x,y)$ at x^0 from ω .

Next, we write

 $Z:=(\ell\times\hat{V})\backslash\{(x,\theta)\,;\,\varphi(x,\theta)=0\},\qquad \delta Z:=(\ell\times\hat{\sigma}\hat{V})\backslash\{(x,\theta)\,;\,\varphi(x,\theta)=0\}.$ Let $\iota:(V_x,\delta V_x)=\longrightarrow(Z,\delta Z)$ be the inclusion mappings and let

$$\iota_*: H_{N-1}(\mathbf{V}_x, \delta \mathbf{V}_x) \ni \alpha \longmapsto \alpha_* \in H_{N-1}(\mathbf{Z}, \delta \mathbf{Z})$$

be mappings induced by ι . If we can clarify the structure of the mappings ι_* , we can restate the theorems (or local Petrowsky condition) in more explicit way. For example, suppose $\varphi(x,\theta)$ is an A_m -type function; i.e.

$$\varphi(x,\theta) = \theta^{m+1} + x_1 \theta^{m-1} + \cdots + x_{m-1} \theta + x_m.$$

Then $\alpha(x;\sigma)$ determine the same homology class in $H_1(Z,\delta Z)$ as long as x belongs to the same component ω . We shall write this class by $\alpha_*(\omega;\sigma) \in H_1(Z,\delta Z)$. Then we have

Theorem 3. Let $\varphi(x,\theta)$ be an A_m -type function. Then $G_q^{\sigma}(x)$ is sharp at x^0 from ω if and only if there is a chain $\beta \in H_1(V_{x^0}, \delta V_{x^0})$ such that $\alpha_*(\omega; \sigma) = \iota_*\beta$.

For the case when q is a half integer, a similar arguments are possible. In doing so, however, we have to consider instead of V_x etc., the double covering of V_x etc., branched at $\varphi(x,\theta)=0$. In this case, there are delicate problems in selection of branches of the cycles. The details will appear elsewhere [6]. See also [5] for explicit calculations when $\varphi(x,\theta)$ is A_m -type.

References

- [1] Duistermaat, J. J.: Fourier Integral Operators. Courant Institute Lecture Note (1973).
- [2] —: Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math., 27, 207-281 (1974).
- [3] Gårding, L.: Sharp fronts of paired oscillatory integrals. Publ. RIMS, Kyoto Univ., 12 Suppl., 53-68 (1977).
- [4] Hirschowitz, A., and Piriou, A.: Propriété de transmission pour les distributions intégrals de Fourier. Comm. P.D.E., 4, 113-213 (1979).
- [5] Yamada, H.: A note on sharpness of some distributions associated with A_m -singularity (in preparation).
- [6] —: Sharpness of parametrices for strictly hyperbolic operators (in preparation).