4. A Calculus of the Gauss-Manin System of Type A_{l}. I
 The Residual Representation

By Shinzo Ishiura*) and Masatoshi Noumi**)
(Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1982)

The present note is the former half of our article titled "A calculus of the Gauss-Manin system of type A_{l} ". For the latter half, see [4].
0. Introduction. Let $F=x^{l}+t_{2} x^{l-2}+\cdots+t_{l}$ be the versal deformation of the isolated singularity $x^{l}=0$ of type A_{l-1} and consider the integral

$$
\begin{equation*}
u(t)=\int \delta(F(x, t)) d x, \quad t=\left(t_{2}, \cdots, t_{l}\right) \tag{0.1}
\end{equation*}
$$

In the present article, we propose two types of explicit representations of the Gauss-Manin system H_{F} of type A_{t-1} i.e. the system of microdifferential equations associated with the integral (0.1). (Theorems 1 and 5.) In Theorem 1, we give a matricial representation of the GaussManin system H_{F} for the flat basis, which we call the residual representation. (See no. 2.) In Theorem 5, we propose the Hamiltonian representation of H_{F} in terms of the flat coordinates introduced by K. Saito, T. Yano and J. Sekiguchi [2]. (See no. 4.) Our construction of the two representations is based on an interesting connection between the flat coordinates of type A_{l-1} and the fractional power $F^{1 / h}$ of F. (See nos. 1 and 3.) The Hamiltonian representation allows us to calculate explicitly the quantized contact transformation which reduces the Gauss-Manin system H_{F} to a standard form (Theorem 6). The details of the following arguments will be published elsewhere.

1. The flat basis. Let R be the polynomial ring $C\left[s_{2}, s_{3}, s_{4}, \ldots\right]$ of countably many variables $s_{2}, s_{3}, s_{4}, \cdots$ and $R\left(\left(x^{-1}\right)\right)$ the ring $R\left[\left[x^{-1}\right]\right][x]$ of formal Laurent series in x^{-1} with coefficients in R. By the definition, each element ϕ of $R\left(\left(x^{-1}\right)\right)$ is written as a formal sum

$$
\begin{equation*}
\phi=\sum_{i=0}^{\infty} \phi_{i} x^{m-i}, \tag{1.1}
\end{equation*}
$$

where m is an integer and $\phi_{i} \in R$ for each $i \in N$. Such a ϕ is said to be of degree m if $\phi_{0} \neq 0$. We denote by $\operatorname{Res}_{x}(\phi)$ the coefficient ϕ_{m+1} of x^{-1} and by $(\phi)_{+}$the polynomial part of ϕ :

$$
\begin{equation*}
(\phi)_{+}=\sum_{i=0}^{m} \phi_{i} x^{m-i} . \tag{1.2}
\end{equation*}
$$

[^0]The residue symbol Res_{x} is characterized as the unique R-homomorphism $R\left(\left(x^{-1}\right)\right) \rightarrow R$ satisfying the following conditions:
i) $\operatorname{Res}_{x}\left(\partial_{x}(\phi)\right)=0$ for any $\phi \in R\left(\left(x^{-1}\right)\right)$ and
ii) $\operatorname{Res}_{x}\left(\partial_{x}(\phi) / \phi\right)=\operatorname{deg}_{x}(\phi)$ if $\phi \in R\left(\left(x^{-1}\right)\right)$ is invertible, where ∂_{x} $=\partial / \partial x$.

For the variables $s_{2}, s_{3}, s_{4}, \cdots$ in R, we set

$$
\begin{equation*}
f=x+\sum_{i=2}^{\infty} s_{i} x^{1-i} \tag{1.3}
\end{equation*}
$$

Moreover, we define two sequences $\left(F_{k}\right)_{k \in N}$ and $\left(e_{k}\right)_{k \in N}$ of monic polynomials in $R[x]$ by

$$
\begin{equation*}
F_{k}=\left(f^{k}\right)_{+} \text {and } e_{k}=\left(\partial_{x}(f) f^{k}\right)_{+} \tag{1.4}
\end{equation*}
$$

Proposition 1. Let $\left(F_{k}\right)_{k \in N}$ be as above. Then we have

$$
\begin{equation*}
\operatorname{deg}_{x}\left(l F_{l} \partial_{x}\left(F_{k}\right)-k F_{k} \partial_{x}\left(F_{l}\right)\right) \leq l-2 \text { for } k \leq l \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{deg}_{x}\left(\partial_{s_{i}}\left(F_{l}\right) \partial_{x}\left(F_{k}\right)-\partial_{s_{i}}\left(F_{k}\right) \partial_{x}\left(F_{l}\right)\right) \leq l-2 \text { for } k \leq l . \tag{and}
\end{equation*}
$$

Proposition 2 (Flatness of $\left.\left(e_{k}\right)_{k \in N}\right)$. Let $\left(e_{k}\right)_{k \in N}$ be as in (1.4). Then, for any integers i, j and k with $0 \leq i, j \leq k$, we have

$$
\operatorname{Res}_{x}\left(e_{i} e_{j} / e_{k}\right)= \begin{cases}1 & \text { if } i+j-k=-1 \\ 0 & \text { if } i+j-k \neq-1\end{cases}
$$

In view of Proposition 2, the sequence $\left(e_{k}\right)_{k \in N}$ will be called the flat basis for $R[x]$.

Now let $F=x^{l}+t_{2} x^{l-2}+\cdots+t_{l}$ be the versal deformation of the isolated singularity $x^{l}=0$ of type A_{l-1}. Let R_{l} be the polynomial ring $C\left[t_{2}, \cdots, t_{l}\right]$ of $l-1$ variables t_{2}, \cdots, t_{l} and $R_{l}\left(\left(x^{-1}\right)\right)$ the ring of formal Laurent series in x^{-1} with coefficients in R_{l}. Then we can take the fractional power $F^{1 / l}$ of F in $R_{l}\left(\left(x^{-1}\right)\right)$:

$$
\begin{equation*}
F^{1 / l}=\sum_{i=0}^{\infty}(1+t(u))_{i}^{1 / l} x^{1-i} \tag{1.7}
\end{equation*}
$$

where we set

$$
t(u)=\sum_{i=2}^{i} t_{i} u^{i}
$$

for an indeterminate u and $(1+t(u))_{i}^{1 / l}$ stands for the coefficient of u^{i} in the Taylor expansion of $(1+t(u))^{1 / l}$. Noting this, we define a ringhomomorphism $\rho_{l}: R \rightarrow R_{l}$ by

$$
\rho_{l}\left(s_{i}\right)=(1+t(u))_{i}^{1 / l} \quad \text { for } i=2,3, \cdots
$$

Then the kernel of ρ_{l} is the ideal J_{l} of R generated by the polynomials $(1+s(u))_{j}^{l}(j>l)$, where $s(u)=\sum_{i=2}^{\infty} s_{i} u^{i}$. The isomorphisms of rings

$$
R / J_{l} \xrightarrow{\sim} R_{l} \quad \text { and } \quad R / J_{l}\left(\left(x^{-1}\right)\right) \xrightarrow{\sim} R_{l}\left(\left(x^{-1}\right)\right)
$$

will be called the homomorphisms of l-reduction. With this identification, the l-reduction of F_{k}, e_{k} or s_{i} will be denoted by the same symbol. Then we have

$$
\begin{equation*}
F_{k}=\left(F^{k / l}\right)_{+} \quad \text { and } \quad e_{k}=\frac{1}{k+1}\left(\partial_{x}\left(F^{(k+1) / l}\right)\right)_{+} \tag{1.8}
\end{equation*}
$$

in $R_{l}[x]$.
2. The Gauss-Manin system of type $A_{l_{-1}}$.

Fix an integer $l \geq 2$ and consider the versal deformation

$$
F=x^{l}+t_{2} x^{l-2}+\cdots+t_{l}
$$

of type A_{l-1}. Let (y_{2}, \cdots, y_{l}) be a coordinate system for the space of parameters $\left(t_{2}, \cdots t_{l}\right)$ such that
i) y_{j} is a polynomial without constant term in $\left(t_{2}, \cdots, t_{l}\right)$ for j $=2, \cdots, l$, and
ii) $\partial_{t_{i}}\left(y_{i}\right)=1$ and $\partial_{t_{j}}\left(y_{i}\right)=0$ for $i<j$.

We recall the Gauss-Manin system \underline{H}_{F} for F i.e. the system of micro-differential equations associated with the integral of the delta function $\delta(F)$. (For the details, see F. Pham [1].)

Let $Z=\boldsymbol{C}^{l}$ be the complex affine l-space with coordinates (x, y_{2}, \cdots, y_{l}) and $S=C^{l-1}$ the complex affine ($l-1$)-space with coordinates (y_{2}, \cdots, y_{l}). Then the sheaf $\mathcal{C}_{[F]}$ over the cotangent bundle $T^{*} Z$ is the microlocalization of the sheaf $\mathscr{B}_{[F]}$ of algebraic hyperfunctions with supports in $\{F=0\}$ defined by

$$
\mathscr{B}_{\left[F^{\prime}\right]}=\mathcal{O}_{Z}\left[F^{-1}\right] / \mathcal{O}_{z},
$$

where \mathcal{O}_{Z} is the sheaf of holomorphic functions over Z. The modulo class of $-(1 / 2 \pi i) \cdot 1 / \mathrm{F}$ in $\mathscr{B}_{[F]}$ or $\mathcal{C}_{[F]}$ is denoted by $\delta(F)$. Let ρ and $\tilde{\omega}$ be the canonical morphisms

$$
' T^{*} Z \stackrel{\rho}{\longleftrightarrow} Z \times{ }_{S}^{\prime} T^{*} S \xrightarrow{\tilde{\omega}}{ }^{\prime} T^{*} S
$$

and consider the relative De Rham complex $\mathrm{DR}_{z / S}\left(\mathcal{C}_{[F]}\right)$ with coefficients in $\mathcal{C}_{[F]}$. Then we set

$$
\underline{H}_{F}=\underline{\mathrm{H}}^{1}\left(\tilde{\omega}_{*} \rho^{-1}\left(\underline{\mathrm{DR}}_{z / S}^{\cdot}\left(\mathcal{C}_{[F]}\right)\right)=\int_{S-Z}^{0} \mathcal{C}_{[F]},\right.
$$

which is the integration of $\mathcal{C}_{[F]}$ along the fibres of the canonical projection $Z \rightarrow S$. The sheaf \underline{H}_{F} over ${ }^{\prime} T^{*} S$ has a natural structure of a left Module over the Ring \mathcal{E}_{s} of micro-differential operators over S. Hereafter, we denote by H_{F} the stalk $\underline{H}_{F,\left(0, a y_{l}\right)}$ of \underline{H}_{F} and call H_{F} the Gauss-Manin system associated with F. With a canonical good filtration $\left(H_{F}^{(k)}\right)_{k \in Z}, H_{F}$ is a simple holonomic system with generator

$$
u=\int \delta(F) d x \in H_{F}^{(0)}
$$

We remark that $H_{F}^{(0)}$ is a free module of rank $l-1$ over the ring $C\left\{y_{2}, \cdots\right.$, $\left.y_{l-1}\right\}\left\{\left\{\partial_{y}^{-1}\right\}\right\}$.

Now we take the sequence e_{0}, \cdots, e_{l-2} of monic polynomials in $R_{l}[x]$ defined by (1.8) and set

$$
u_{i}=\int e_{i} \delta(F) d x \quad \text { for } i=0, \cdots, l-2
$$

Then u_{0}, \cdots, u_{l-2} form a free basis of $H_{F}^{(0)}$ over the ring $C\left\{y_{2}, \cdots\right.$, $\left.y_{l-1}\right\}\left\{\left\{\partial_{y}^{-1}\right\}\right\}$, which we call the flat basis for the Gauss-Manin system H_{F}.

The following theorem gives a "residual" representation of the GaussManin system H_{F} as a system of micro-differential equations for the vector $\vec{u}={ }^{t}\left(u_{0}, \cdots, u_{l-2}\right)$ of unknown functions.

Theorem 1. Let u_{0}, \cdots, u_{l-2} be the flat basis for H_{F}. Then the Gauss-Manin system H_{F} of type A_{l-1} is given by

$$
\left\{\begin{array}{l}
y_{l} \vec{u}=A_{0} \vec{u}+A_{1} \partial_{y}^{-1} \vec{u} \quad \text { and } \tag{2.1}\\
\partial_{y_{k}} \partial_{y_{l}}^{-1} \vec{u}=B^{(k)} \vec{u} \quad \text { for } k=2, \cdots, l-1 .
\end{array}\right.
$$

Here A_{1} is the diagonal matrix of size $l-1$ whose diagonal components are $(1 / l, 2 / l, \cdots,(l-1) / l) . \quad A_{0}$ and $B^{(k)}(k=2, \cdots, l-1)$ are determined by the following residual representations:

$$
A_{0}=\left(a_{i j}\right)_{0 \leq i, j \leq l-2} \in M\left(l-1, C\left[y_{2}, \cdots, y_{l-1}\right]\right)
$$

where

$$
\begin{equation*}
a_{i j}=l \operatorname{Res}_{x}\left(e_{i} e_{l-2-j}\left(y_{l}-F\right) / \partial_{x}(F)\right) \tag{2.2}
\end{equation*}
$$

and

$$
B^{(k)}=\left(b_{i j}^{(k)}\right)_{0 \leq i, j \leq l-2} \in M\left(l-1, C\left[y_{2}, \cdots, y_{l-1}\right]\right),
$$

where
(2.3)

$$
b_{i j}^{(k)}=l \operatorname{Res}_{x}\left(e_{i} e_{l-2-j} \partial_{y_{k}}(F) / \partial_{x}(F)\right) .
$$

Theorem 1 is a consequence of Propositions 1 and 2 in no. 1.
By the compatibility condition of the system (2.1), we have
Proposition 3. (i) $\left[B^{(k)}, A_{0}\right]=0$ for $k=2, \cdots, l-1$ and
(ii) $\quad\left[B^{(k)}, A_{1}\right]-B^{(k)}=\partial_{y_{k}}\left(A_{0}\right)$ for $k=2, \cdots, l-1$.

References

[1] F. Pham: Singularités des systèmes différentiels de Gauss-Manin. Birkhäuser, Boston (1979).
[2] K. Saito, T. Yano, and J. Sekiguchi: On a certain generator system of the ring of invariants of a finite reflection group. Comm. in Algebra, 8(4), 373-408 (1980).
[3] K. Saito: Primitive forms for a universal unfolding of a function with an isolated critical point (preprint).
[4] S. Ishiura and M. Noumi: A calculus of the Gauss-Manin system of type A_{l}. II (to appear in Proc. Japan Acad., 58A (2)).

[^0]: *) Department of Mathematics, Keio University.
 **) Department of Mathematics, Sophia University.

