20. Spatial Growth of Solutions of a Non-Linear Equation

By Kōhei Uchiyama
Nara Women's University
(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1981)

1. Given a continuous function $M(u, \bar{u})$ of $(u, \bar{u}) \in[0,1]^{2}$ and a nondecreasing function $\boldsymbol{F}(x)$ on $\boldsymbol{R}=(-\infty,+\infty)$ with $\lim _{x \rightarrow-\infty} \boldsymbol{F}(x)=0$, and $\lim _{x \rightarrow+\infty} F(x)=1$, let us consider the following evolution equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=M(u, \bar{u}) \quad(u=u(x, t), x \in R, t>0) \tag{1}
\end{equation*}
$$

where

$$
\bar{u}=\bar{u}(x, t)=\int_{-\infty}^{+\infty} u(x-y, t) d F(y) .
$$

It is assumed throughout the paper that M has continuous partial derivatives $M_{u}=\partial M / \partial u$ and $M_{u}=\partial M / \partial \bar{u}$, and satisfies

$$
\begin{equation*}
\alpha \equiv M_{u}(0,0)>0, \quad \beta \equiv M_{u}(0,0)>-\alpha \tag{2}
\end{equation*}
$$

(3) $\quad M(0,0)=M(1,1)=0 ; M_{u}(u, \bar{u}) \geqq 0$ for $(u, \bar{u}) \in[0,1]^{2}$

$$
\begin{equation*}
M(u, u)>0 \quad \text { for } 0<u<1 \tag{4}
\end{equation*}
$$

and that F is right-continuous and satisfies

$$
\begin{equation*}
0<F(0-) \leqq F(0)<1 \tag{5}
\end{equation*}
$$

and its bilateral Laplace transform

$$
\psi(\theta) \equiv \int_{-\infty}^{+\infty} e^{\theta x} d F(x)
$$

is convergent in a neighborhood of zero.
It is routine to see from (3) that for any Borel measurable function $f(x)$ taking values in $[0,1]$, there is a unique solution of (1), with initial condition $u(x, 0)=f(x)$, which is also confined in [0,1] (we will consider only such solutions), and that if two initial functions satisfy $0 \leqq f_{1} \leqq f_{2} \leqq 1$, the corresponding solutions preserve the inequality.

A typical example of M is $M(u, \bar{u})=\alpha \bar{u}-(\alpha+\beta) u \bar{u}+\beta u$. If we let $\beta=0$ in this example, (1) becomes the equation of simple epidemics (cf. [5])

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\alpha \bar{u}(1-u) . \tag{6}
\end{equation*}
$$

Another typical case is $M=\alpha(\bar{u}-u)+g(u)$, where g is continuously differentiable function with $g(0)=g(1)=0, g^{\prime}(0)>0$ and $g(u)>0$ for $0<u<1$. If we replace, in this case, the compound Poisson operator $u \longmapsto \sim \bar{u}$ by the diffusion operator $u \longmapsto \sim \partial^{2} u / \partial x^{2}$, a nonlinear diffusion equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}+g(u) \tag{7}
\end{equation*}
$$

appears. Concerning the equation (7) there are a number of works and it is shown among others that any solution of (7) with finite initial function propagates to the right and left with the asymptotic speed $2 \sqrt{\alpha g^{\prime}(0)}$, provided further $g(u) \leqq g^{\prime}(0) u(0 \leqq u \leqq 1)$ (cf. [1]). The purpose of this note is to obtain an analogue for the equation (1). In a special case of (6) the result is obtained in [6] by an entirely different method (cf. also [2], [3] and [5]).
2. If $d F(x)$ is supported by a lattice containing zero, we denote by X the smallest one among such lattices; otherwise let $X=\boldsymbol{R}$. Set

$$
\mathrm{c}^{*}=\inf _{\theta>0} \frac{\alpha \psi(\theta)+\beta}{\theta} \quad \text { and } \quad c_{*}=-\inf _{\theta<0} \frac{\alpha \psi(\theta)+\beta}{|\theta|}
$$

The result of this note is
Theorem. If the initial function is continuous and positive at least at one point of X and if $c_{*}<c_{2}<c_{1}<c^{*}$, then

$$
\begin{equation*}
\lim _{\substack{t \rightarrow \infty \\ c_{2} t<x \\ x \in X}} \inf _{\substack{ \\c_{1} t}} u(x, t)=1 . \tag{8}
\end{equation*}
$$

Remark. If it is further assumed that

$$
\begin{equation*}
M(u, \bar{u}) \leqq \alpha \bar{u}+\beta u \quad \text { for } \quad(u, \bar{u}) \in[0,1]^{2}, \tag{9}
\end{equation*}
$$

solutions of (1) with $u(x, 0)=0$ for $x>0$ propagate to the right with asymptotic speed c^{*} in the sense of (8) and of the following

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{x>c t} u(x, t)=0 \quad \text { for } c>c^{*} . \tag{10}
\end{equation*}
$$

(c^{*} may be negative; in such a case we should say that solutions recede to the left.) The relation (10) is easily seen by comparing solutions of (1) with those of the linear equation $\partial u / \partial t=\alpha \bar{u}+\beta u$ (cf. [3]). When the condition (9) is violated, the asymptotic speed for (1) could be larger than c^{*}, as is suggested from the diffusion case (7). Arguments for c_{*} are parallel.
3. For the proof of Theorem we prepare two lemmas.

Lemma 1. Let $c_{*}<c_{2}<c_{1}<c^{*}$. Then there is a positive number δ such that if $0<\varepsilon, \lambda<\delta$, and $c_{2} \leqq c \leqq c_{1}$, the function

$$
\begin{equation*}
w(x)=\varepsilon \exp \left(-\lambda x^{2}\right) \tag{11}
\end{equation*}
$$

is a c-substationary solution for (1), i.e.

$$
\begin{equation*}
c w^{\prime}+M(w, \bar{w}) \geqq 0 \quad\left(w^{\prime}=\frac{d w}{d x}\right) \tag{12}
\end{equation*}
$$

Proof. Let $c_{*}<c<c^{*}$ and w be defined by (11). Then for small enough ε

$$
M(w, \bar{w})(x) \geqq\left\{\beta+s(\varepsilon)+(\alpha+s(\varepsilon)) \int \exp \left(2 \lambda x y-\lambda y^{2}\right) d F(y)\right\} w(x)
$$

where $s(\varepsilon)$ is a function of ε only and tends to zero as $\varepsilon \downarrow 0$. If we set

$$
J(\theta, \lambda, \varepsilon)=\frac{1}{|\theta|}\left\{\beta+s(\varepsilon)+(\alpha+s(\varepsilon)) \int \exp \left(\theta y-\lambda y^{2}\right) d F(y)\right\} \quad(\theta \neq 0)
$$

then
(13) $\quad c w^{\prime}(x)+M(w, \bar{w})(x) \geqq 2 \lambda|x|\{-c \operatorname{sign} x+J(2 \lambda x, \lambda, \varepsilon)\} w(x)$,
where $|x| \operatorname{sign} x=x$. It is not difficult to see that $\underline{\lim }_{\varepsilon, \lambda \downarrow 0} \min _{\theta>0} J(\theta, \lambda, \varepsilon)$ $\geqq c^{*}$. Now let $c_{*}<c_{2}<c_{1}<c^{*}$. Then we can choose $\delta_{1}>0$ so that if $0<\varepsilon, \lambda<\delta_{1}$, then $-c+J(2 \lambda x, \lambda, \varepsilon) \geqq 0$ for $x>0$ and $c \leqq c_{1}$. Similarly if $0<\varepsilon, \lambda<\delta_{2}$, then $c+J(2 \lambda x, \lambda, \varepsilon) \geqq 0$ for $x<0$ and $c \geqq c_{2}$. Thus the assertion of Lemma 1 follows from (13) by setting $\delta=\min \left(\delta_{1}, \delta_{2}\right)$.

Lemma 2. Let $b_{0}=\sup \{x: F(x)<1\}\left(0<b_{0} \leqq \infty\right)$ and ε be any positive number. Then the solution of $\partial v / \partial t=\varepsilon \bar{v}(t>0)$ satisfies

$$
\lim _{x \rightarrow \infty, x \in X} \frac{1}{x \log x} \log (1 / v(x, t))=\frac{1}{b_{0}} \quad \text { for } t>0
$$

provided that $v(x, 0)$ is nonnegative, bounded and continuous, and vanishes for $x>0$ but does not for some point of X.

Proof. Let $f(x)=v(x, 0)$ satisfy what is provided in the lemma and set

$$
G_{t}(x)=\sum_{n=0}^{\infty} \frac{(\varepsilon t)^{n}}{n!} F^{* n}(x) \quad(t>0)
$$

where $F^{* n}$ denotes the n-fold convolution of F. Then

$$
v(x, t)=\int f(x-y) d G_{t}(y)
$$

Noting $F^{* n}(y)=1$ for $y>n b_{0}$, we see

$$
v(x, t) \leqq\left(\sup _{y} f(y)\right) \sum_{n=\left[x / b_{0}\right]}^{\infty}(\varepsilon t)^{n} / n!
$$

and hence, by $\lim \log (n!) / n \log n=1, \underline{\lim }(1 / x \log x) \log (1 / v(x, t)) \geqq 1 / b_{0}$. To prove the opposite inequality

$$
\begin{equation*}
\varlimsup \overline{\lim } \frac{1}{x \log x} \log (1 / v(x, t)) \leqq \frac{1}{b_{0}} \tag{14}
\end{equation*}
$$

we can assume $f=I_{[0, h)}$ (the indicator function of $[0, h)$) for a positive h. Take $b<b_{0}$ arbitrarily and observe that for each n

$$
v(x, t) \geqq \frac{(\varepsilon t)^{n}}{n!} \int_{n b+}^{\infty} I_{[0, h)}(x-y) d F^{* n}(y)=\frac{(\varepsilon t(1-F(b)))^{n}}{n!}\left(\tilde{F}^{* n}(x)-\tilde{F}^{* n}(x-h)\right)
$$

where $\tilde{F}(x)=(F(x \vee b)-F(b)) /(1-F(b))$. Let

$$
\mu=\int x d \tilde{F}(x) \quad \text { and } \quad \sigma=\left(\int(x-\mu)^{2} d \tilde{F}(x)\right)^{1 / 2}
$$

First we assume that $b_{0}=\infty$ or $F\left(b_{0}\right)-F\left(b_{0}-\right)=0$ and that F is nonlattice. Then $\sigma>0$ and a central limit approximation (cf. [4, §42]) implies

$$
\tilde{F}^{* n}(x)-\tilde{F}^{* n}(x-h)=\frac{h}{\sigma \sqrt{n}}+o\left(\frac{1}{\sqrt{n}}\right) \quad \text { as } n=[x / \mu] \rightarrow \infty,
$$

and so

$$
\overline{\lim } \frac{1}{x \log x} \log (1 / v(x, t)) \leqq \lim \frac{1}{x \log x} \log ([x / \mu]!)=\frac{1}{\mu} .
$$

Since $b<\mu$ and b can be arbitrarily close to b_{0}, we obtain (14).
When F is lattice or $F\left(b_{0}\right)-F\left(b_{0}-\right)>0$, (14) is verified in a similar way too, if we note $v(x, t)=\int v(x-y, t / 2) d G_{t / 2}(y)$ after seeing $\inf _{|x|<L, x \in X} v(x, t / 2)>0$ for any $L>0$. This inequality follows from the fact that the support of $d G_{t}(x)$ agrees with X, which would be easily seen in the case that F is centered lattice or F is not lattice. In the remaining case there are real numbers $0<\xi<d$ such that ξ / d is irrational and F has positive jumps at ξ and at $\xi-d$, and therefore $d G_{t}(x)$ has positive mass at each point of $H=\{n \xi+m(\xi-d): n, m=1$, $2, \cdots\}$. It is left to the reader to show that H is dense in \boldsymbol{R}. The proof of Lemma 2 is finished.
4. Proof of Theorem. Let $c_{*}<c_{2}^{\prime}<c_{2}<c_{1}<c_{1}^{\prime}<c^{*}$ and $u(x, t)$ be a solution of (1) with an initial function satisfying the condition of Theorem. After some comparison arguments, a crude application of Lemma 2 shows that for any $\lambda>0$, there is $\varepsilon>0$ such that $u(x, 1)$ $\geqq \varepsilon \exp \left(-\lambda x^{2}\right), x \in X$. Accordingly it follows from Lemma 1 that there is a smooth positive function w such that $u(x, 1) \geqq w(x), x \in X$ and w satisfies (12) simultaneously for $c_{2}^{\prime} \leqq c \leqq c_{1}^{\prime}$. Let $u_{*}(x, t)$ be the solution of (1) starting from this w. Then
(15) $\quad u_{*}(x, t) \leqq u(x, t+1)$ for all $x \in X$ and $t>0$.

Since $v(x, t) \equiv(\partial / \partial t) u_{*}(x+c t, t)$ satisfies $\partial v / \partial t=c(\partial v / \partial x)+A \bar{v}+B v$, where A and B are bounded continuous functions of ($x, t)$, and $v(\cdot, 0$) $=c w^{\prime}+M(w, \bar{w})$, we see $u_{*}(x+c t, t)$ is nondecreasing in t if $c_{2}^{\prime} \leqq c \leqq c_{1}^{\prime}$. Now let $c_{2} \leqq c \leqq c_{1}$ and $w_{c}(x) \equiv \lim _{t \rightarrow \infty} u_{*}(x+c t, t)$. Then w_{c} is a stationary solution of $\partial u / \partial t=c(\partial u / \partial x)+M(u, \bar{u})$. In other words, $w_{c}(x-c t)$ is a solution of (1). Since $w_{\mathrm{c}}(x) \geqq u_{*}(x, 0)=w(x)$, it is found that $w_{c}(x-c t) \geqq u_{*}(x, t)$, or, what is the same, $w_{c}\left(x+\left(c_{1}^{\prime}-c\right) t\right) \geqq u_{*}\left(x+c_{1}^{\prime}, t\right)$. This implies $\lim _{x \rightarrow \infty} w_{c}(x)>0$. Similarly $\lim _{x \rightarrow-\infty} w_{c}(x)>0$. Thus $\delta \equiv \inf _{x} w_{c}(x)>0$ and so we have $w_{c}(x-c t) \geqq y(t)$, where y is a solution of $d y / d t=M(y, y)$ with $y(0)=\delta$. By virtue of (4), $y(t) \uparrow 1$. Hence w_{c} $\equiv 1$. Consequently $u_{*}(c t, t) \uparrow 1$ for $c_{1} \leqq c \leqq c_{2}$. By (15) this completes the proof.

References

[1] Aronson, D. G., and Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve propagation. Lect. Notes in Math., vol. 446, Springer-Verlag, New York (1975).
[2] Biggins, J. D.: Growth rates in the branching random walk. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 48, 17-34 (1979).
[3] Daniels, H. E.: The deterministic spread of a simple epidemics. Perspec-
tives in Probability and Statistics (ed. J. Gani, Applied Probability Trust, Sheffield), Academic Press, London, pp. 373-386 (1975).
[4] Gnedenko, B. V., and Kolmogorov, A. N.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, Mass. (1954).
[5] Mollison, D.: Markovian contact processes. Adv. Appl. Prob., 10, 85-108 (1978).
[6] Uchiyama, K.: Spatial growth of a branching process of particles in \boldsymbol{R}^{d} (to appear).

