By Kōhei UCHIYAMA

Nara Women's University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1981)

1. Given a continuous function $M(u, \overline{u})$ of $(u, \overline{u}) \in [0, 1]^2$ and a nondecreasing function F(x) on $R = (-\infty, +\infty)$ with $\lim_{x \to -\infty} F(x) = 0$, and $\lim_{x \to +\infty} F(x) = 1$, let us consider the following evolution equation

(1)
$$\frac{\partial u}{\partial t} = M(u, \bar{u}) \quad (u = u(x, t), x \in \mathbf{R}, t > 0)$$

where

$$\overline{u} = \overline{u}(x, t) = \int_{-\infty}^{+\infty} u(x-y, t) dF(y).$$

It is assumed throughout the paper that M has continuous partial derivatives $M_u = \partial M / \partial u$ and $M_u = \partial M / \partial \overline{u}$, and satisfies

and that F is right-continuous and satisfies

(5) $0 < F(0) \le F(0) < 1$

and its bilateral Laplace transform

$$\psi(\theta) \equiv \int_{-\infty}^{+\infty} e^{\theta x} dF(x)$$

is convergent in a neighborhood of zero.

It is routine to see from (3) that for any Borel measurable function f(x) taking values in [0, 1], there is a unique solution of (1), with initial condition u(x, 0) = f(x), which is also confined in [0, 1] (we will consider only such solutions), and that if two initial functions satisfy $0 \le f_1 \le f_2 \le 1$, the corresponding solutions preserve the inequality.

A typical example of M is $M(u, \bar{u}) = \alpha \bar{u} - (\alpha + \beta)u\bar{u} + \beta u$. If we let $\beta = 0$ in this example, (1) becomes the equation of simple epidemics (cf. [5])

$$\frac{\partial u}{\partial t} = \alpha \overline{u}(1-u).$$

Another typical case is $M = \alpha(\overline{u} - u) + g(u)$, where g is continuously differentiable function with g(0) = g(1) = 0, g'(0) > 0 and g(u) > 0 for 0 < u < 1. If we replace, in this case, the compound Poisson operator $u \mapsto \overline{u}$ by the diffusion operator $u \mapsto \partial^2 u / \partial x^2$, a nonlinear diffusion equation

No. 2] Spacial Growth of Solutions of a Non-linear Equation

(7)
$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + g(u)$$

appears. Concerning the equation (7) there are a number of works and it is shown among others that any solution of (7) with finite initial function propagates to the right and left with the asymptotic speed $2\sqrt{\alpha g'(0)}$, provided further $g(u) \leq g'(0)u$ ($0 \leq u \leq 1$) (cf. [1]). The purpose of this note is to obtain an analogue for the equation (1). In a special case of (6) the result is obtained in [6] by an entirely different method (cf. also [2], [3] and [5]).

2. If dF(x) is supported by a lattice containing zero, we denote by X the smallest one among such lattices; otherwise let X=R. Set

$$c^* = \inf_{\theta > 0} \frac{\alpha \psi(\theta) + \beta}{\theta}$$
 and $c_* = -\inf_{\theta < 0} \frac{\alpha \psi(\theta) + \beta}{|\theta|}$

The result of this note is

Theorem. If the initial function is continuous and positive at least at one point of X and if $c_* < c_2 < c_1 < c^*$, then

$$\lim_{t\to\infty}\inf_{\substack{t\to\infty\\x\in X}}u(x,t)=1.$$

Remark. If it is further assumed that

(9) $M(u, \overline{u}) \leq \alpha \overline{u} + \beta u \text{ for } (u, \overline{u}) \in [0, 1]^2$,

solutions of (1) with u(x, 0)=0 for x>0 propagate to the right with asymptotic speed c^* in the sense of (8) and of the following

(10) $\lim_{t\to\infty} \sup_{x>ct} u(x,t)=0 \quad \text{for } c>c^*.$

(c^* may be negative; in such a case we should say that solutions recede to the left.) The relation (10) is easily seen by comparing solutions of (1) with those of the linear equation $\partial u/\partial t = \alpha \overline{u} + \beta u$ (cf. [3]). When the condition (9) is violated, the asymptotic speed for (1) could be larger than c^* , as is suggested from the diffusion case (7). Arguments for c_* are parallel.

3. For the proof of Theorem we prepare two lemmas.

Lemma 1. Let $c_* < c_2 < c_1 < c^*$. Then there is a positive number δ such that if $0 < \varepsilon$, $\lambda < \delta$, and $c_2 \leq c \leq c_1$, the function

(11)
$$w(x) = \varepsilon \exp(-\lambda x^2)$$

is a c-substationary solution for (1), i.e.

(12)
$$cw' + M(w, \overline{w}) \ge 0 \qquad \left(w' = \frac{dw}{dx}\right).$$

Proof. Let $c_* < c < c^*$ and w be defined by (11). Then for small enough ε

$$M(w, \overline{w})(x) \ge \{\beta + s(\varepsilon) + (\alpha + s(\varepsilon)) \int \exp(2\lambda x y - \lambda y^2) dF(y)\}w(x)$$

where $s(\varepsilon)$ is a function of ε only and tends to zero as $\varepsilon \downarrow 0$. If we set

K. UCHIYAMA

[Vol. 57(A),

$$J(\theta, \lambda, \varepsilon) = \frac{1}{|\theta|} \{\beta + s(\varepsilon) + (\alpha + s(\varepsilon)) \int \exp(\theta y - \lambda y^2) dF(y)\} \quad (\theta \neq 0),$$

then

(13) $cw'(x)+M(w, \overline{w})(x) \ge 2\lambda |x| \{-c \operatorname{sign} x+J(2\lambda x, \lambda, \varepsilon)\}w(x),$ where $|x| \operatorname{sign} x=x$. It is not difficult to see that $\underline{\lim}_{\epsilon,\lambda \downarrow 0} \min_{\theta>0} J(\theta, \lambda, \varepsilon) \ge c^*$. Now let $c_* < c_2 < c_1 < c^*$. Then we can choose $\delta_1 > 0$ so that if $0 < \varepsilon, \lambda < \delta_1$, then $-c+J(2\lambda x, \lambda, \varepsilon) \ge 0$ for x > 0 and $c \le c_1$. Similarly if $0 < \varepsilon, \lambda < \delta_2$, then $c+J(2\lambda x, \lambda, \varepsilon) \ge 0$ for x < 0 and $c \ge c_2$. Thus the assertion of Lemma 1 follows from (13) by setting $\delta = \min(\delta_1, \delta_2).$

Lemma 2. Let $b_0 = \sup\{x : F(x) < 1\} (0 < b_0 \le \infty)$ and ε be any positive number. Then the solution of $\partial v / \partial t = \varepsilon \overline{v}$ (t>0) satisfies

$$\lim_{x\to\infty, x\in X} \frac{1}{x\log x} \log \left(1/v(x,t)\right) = \frac{1}{b_0} \quad \text{for } t > 0,$$

provided that v(x, 0) is nonnegative, bounded and continuous, and vanishes for x>0 but does not for some point of X.

Proof. Let f(x) = v(x, 0) satisfy what is provided in the lemma and set

$$G_{\iota}(x) = \sum_{n=0}^{\infty} \frac{(\varepsilon t)^n}{n!} F^{*n}(x) \quad (t > 0),$$

where F^{*n} denotes the *n*-fold convolution of *F*. Then

$$v(x, t) = \int f(x-y) dG_t(y).$$

Noting $F^{*n}(y) = 1$ for $y > nb_0$, we see

$$v(x, t) \leq (\sup_{y} f(y)) \sum_{n=\lfloor x/b_0 \rfloor}^{\infty} (\varepsilon t)^n/n!$$

and hence, by $\lim \log(n!)/n \log n = 1$, $\lim (1/x \log x) \log(1/v(x, t)) \ge 1/b_0$. To prove the opposite inequality

(14)
$$\overline{\lim} \frac{1}{x \log x} \log (1/v(x, t)) \leq \frac{1}{b_0},$$

we can assume $f = I_{[0,k)}$ (the indicator function of [0, h)) for a positive h. Take $b < b_0$ arbitrarily and observe that for each n

$$\begin{aligned} v(x,t) &\geq \frac{(\varepsilon t)^n}{n!} \int_{n^{b+}}^{\infty} I_{[0,h)}(x-y) dF^{*n}(y) = \frac{(\varepsilon t(1-F(b)))^n}{n!} (\tilde{F}^{*n}(x) - \tilde{F}^{*n}(x-h)) \\ \text{where } \tilde{F}(x) = (F(x \lor b) - F(b))/(1-F(b)). \quad \text{Let} \\ \mu &= \int x d\tilde{F}(x) \quad \text{and} \quad \sigma = \left(\int (x-\mu)^2 d\tilde{F}(x)\right)^{1/2}. \end{aligned}$$

First we assume that $b_0 = \infty$ or $F(b_0) - F(b_0 -) = 0$ and that F is nonlattice. Then $\sigma > 0$ and a central limit approximation (cf. [4, § 42]) implies

$$\tilde{F}^{*n}(x) - \tilde{F}^{*n}(x-h) = \frac{h}{\sigma\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right) \quad \text{as } n = [x/\mu] \to \infty,$$

and so

92

No. 2]

$$\overline{\lim} \frac{1}{x \log x} \log (1/v(x, t)) \leq \lim \frac{1}{x \log x} \log ([x/\mu]!) = \frac{1}{\mu}.$$

Since $b < \mu$ and b can be arbitrarily close to b_0 , we obtain (14).

When F is lattice or $F(b_0)-F(b_0-)>0$, (14) is verified in a similar way too, if we note $v(x,t)=\int v(x-y,t/2)dG_{i/2}(y)$ after seeing $\inf_{|x|<L, x\in X}v(x,t/2)>0$ for any L>0. This inequality follows from the fact that the support of $dG_i(x)$ agrees with X, which would be easily seen in the case that F is centered lattice or F is not lattice. In the remaining case there are real numbers $0<\xi< d$ such that ξ/d is irrational and F has positive jumps at ξ and at $\xi-d$, and therefore $dG_i(x)$ has positive mass at each point of $H=\{n\xi+m(\xi-d):n,m=1,$ $2,\cdots\}$. It is left to the reader to show that H is dense in R. The proof of Lemma 2 is finished.

4. Proof of Theorem. Let $c_* < c'_2 < c_1 < c'_1 < c^*$ and u(x, t) be a solution of (1) with an initial function satisfying the condition of Theorem. After some comparison arguments, a crude application of Lemma 2 shows that for any $\lambda > 0$, there is $\varepsilon > 0$ such that $u(x, 1) \ge \varepsilon \exp(-\lambda x^2)$, $x \in X$. Accordingly it follows from Lemma 1 that there is a smooth positive function w such that $u(x, 1) \ge w(x)$, $x \in X$ and w satisfies (12) simultaneously for $c'_2 \le c \le c'_1$. Let $u_*(x, t)$ be the solution of (1) starting from this w. Then

(15) $u_*(x, t) \leq u(x, t+1)$ for all $x \in X$ and t > 0.

Since $v(x, t) \equiv (\partial/\partial t)u_*(x+ct, t)$ satisfies $\partial v/\partial t = c(\partial v/\partial x) + A\overline{v} + Bv$, where A and B are bounded continuous functions of (x, t), and $v(\cdot, 0) = cw' + M(w, \overline{w})$, we see $u_*(x+ct, t)$ is nondecreasing in t if $c'_2 \leq c \leq c'_1$. Now let $c_2 \leq c \leq c_1$ and $w_c(x) \equiv \lim_{t \to \infty} u_*(x+ct, t)$. Then w_c is a stationary solution of $\partial u/\partial t = c(\partial u/\partial x) + M(u, \overline{u})$. In other words, $w_c(x-ct)$ is a solution of (1). Since $w_c(x) \geq u_*(x, 0) = w(x)$, it is found that $w_c(x-ct) \geq u_*(x, t)$, or, what is the same, $w_c(x+(c'_1-c)t) \geq u_*(x+c'_1t, t)$. This implies $\lim_{x \to \infty} w_c(x) > 0$. Similarly $\lim_{x \to -\infty} w_c(x) > 0$. Thus $\partial \equiv \inf_x w_c(x) > 0$ and so we have $w_c(x-ct) \geq y(t)$, where y is a solution of dy/dt = M(y, y) with $y(0) = \delta$. By virtue of (4), $y(t) \uparrow 1$. Hence w_c $\equiv 1$. Consequently $u_*(ct, t) \uparrow 1$ for $c_1 \leq c \leq c_2$. By (15) this completes the proof.

References

- Aronson, D. G., and Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve propagation. Lect. Notes in Math., vol. 446, Springer-Verlag, New York (1975).
- [2] Biggins, J. D.: Growth rates in the branching random walk. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 48, 17-34 (1979).
- [3] Daniels, H. E.: The deterministic spread of a simple epidemics. Perspec-

tives in Probability and Statistics (ed. J. Gani, Applied Probability Trust, Sheffield), Academic Press, London, pp. 373-386 (1975).

- [4] Gnedenko, B. V., and Kolmogorov, A. N.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, Mass. (1954).
- [5] Mollison, D.: Markovian contact processes. Adv. Appl. Prob., 10, 85-108 (1978).
- [6] Uchiyama, K.: Spatial growth of a branching process of particles in \mathbb{R}^d (to appear).