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Spatial Growth o Solutions of a Non.Linear Equation

By KShei UCHIYAMA
Nara. Women’s University

(Communicated by K.6saku YOSIDA, M. . A., Feb. 12, 1981)

1. Given a continuous function M(u, ) of (u, )e [0, 1] and a
nondecreasing function F(x) on R--(--, + c) with lim__F(x)--O,
and lim/ F(x)--1, let us consider the following evolution equation

( 1 ) u -M(u, ) (u=u(x, t), x e R, tO)

where

--(x, t)-- u(x-y, t)dF(y).

It is assumed throughout the paper that M has continuous partial
derivatives M-3M/3u and M,--3M/3, and satisfies
( 2 ) ----M(0, 0)0, ----Mu(0, 0) --( 3 ) M(0, 0)-M(1, 1)-0 M,(u, )0 for (u, a) e [0, 1]
( 4 ) M(u, u)O .for 0ul,
and that F is right-continuous and satisfies
( 5 ) 0 F(0-) F(0)< 1
and its bilateral Laplace transform

(0)--+_ edF(x)

is convergent in a neighborhood of zero.
It is routine to see from (3) that for any Borel measurable func-

tion f(x) taking values in [0, 1], there is a unique solution of (1), with
initial condition u(x, 0)=f(x), which is also confined in [0, 1] (we will
consider only such solutions), and that .if two initial functions satisfy
0 <__f <: ft. <: 1, the corresponding solutions preserve the inequality.

A typical example of M is M(u, )=--(+fl)u+flu. If we let
fl=0 in this example, (1) becomes the equation of simple epidemics
(cf. [5])

( 6 ) u (1--u)
3t

Another typical case is M=o(-u)+g(u), where g is continuously
differentiable function with g(0)=g(1)=0, g’(0)0 and g(u)O for
0u1. If we replace, in this case, the compound Poisson operator
u--u by the diffusion operator u --->u/x, a nonlinear diffusion
equation
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( 7 ) u
o: + g(u)

at ax
appears. Concerning the equation (7) there are a number of works
and it is shown among others that any solution of (7) with finite initial
unction propagates to the right and left with the asymptotic speed
2/ag’(0), provided further g(u)g’(O)u (0ugl) (cf. [1]). The pur-
pose of this note is to obtain an analogue for the equation (1). In a
special case of (6) the result is obtained in [6] by an entirely different
method (cf. also [2], [3] and [5]).

2. If dF(x) is supported by a lattice containing zero, we denote
by X the smallest one among such lattices; otherwise let X-R. Set

c* inf ()+fl and c,- -inf ()/fl
>0 0 <0

The result of this note is

Theorem. If the initial function is continuous and positive at
least at one point of X and if c. < c. cl c*, then
( 8 lim inf u(x, t)= 1.

t--,o c.t <x<clt
x@X

Remark. If it is urther assumed that
( 9 ) M(u, )a-flu or (u, a) e [0, 1]2,
solutions of (1) with u(x, 0)--0 for x>O propagate to the right with
asymptotic speed c* in the sense of (8) and of the following

(10) lim sup u(x, t)--O for c>c*.
t--, x>ct

(c* may be negative; in such a case we should say that solutions re-
cede to the. left.) The relation (10) is easily seen by comparing solutions
of (1) with those of the linear equation 3u/t-aa+flu (cf. [3]). When
the condition (9) is violated, the asymptotic speed for (1) could be
larger thaa c*, as is suggested rom the diffusion case (7). Arguments
or c. are parallel.

5. For the proof of Theorem we prepare two lemmas.
Lemma 1. Let c. c2 c, c*. Then there is a positive number

such that if 0<, <, and ccc,, the function
(11) w(x)= exp(-x2)
is a c-substationary solution for (1), i.e.

(12) cw’+M(w )>O (w’-- dw, )clx
Proof. Let c. cc* and w be defined by (11). Then for small

enough

M(w, )(x)(fl-s(D-(a-s(D) exp(2]xy--y)dF(y)}w(x)

where s(D is a function of only and tends to zero as $ 0. If we set



J(8, , )- (fl+s(D- (a+s(D) exp (8y-y)dF(y)} ( 0),

then
(13) cw’(x)+M(w, )(x)2]x(-c sign x+J(2x, ,
where Ix[ sign x=x. It is not difficult to see that lim,0min>0J(,
c*. Now let c.cc,c*. Then we can choose 0 so that
0,, then --c+J(2x, , )0 for x0 and cc. Similarly if
0,, then c+J(2x, , )0 for x0 and cc. Thus the asser-
tion of Lemma 1 ollows from (13) by setting =min (, ).

Lemma 2. Let bo=sup(x F(x)l} (0bo) and be any posi-
tive number. ’Then the solution of v/3t=v (tO) satisfies

lim log (1Iv(x, t))-- 1 for t
,ex x log x b0

provided that v(x, O) is nonnegative, bounded and continuous, and
vanishes for xO but does not for some point of X.

Proof. Let f(x)=v(x, 0) satisfy what is provided in the lemma
and set

Gt(x) (et) F*n(x) (t> 0),

where F* denotes the n-fold convolution of F. Then

v(x, t) =.[ f(x-- y)dG(y).
Noting F*(y)= 1 for ynbo, we see

v(x, t)(supf(y)) (et)n/nI
y [x/b 03

and hence, by lim log(n i)/n log n= 1, lim(1Ix log x) log(1/v(x, t)) 1/bo.
To prove the opposite inequality

(14) li 1 log (1Iv(x, t)) < 1
x log x b0

we can assume f= I:o,) (the indicator unction of [0, h)) for a positive
h. Take b b0 arbitrarily and observe that for each n

where F(x)=(F(xb)--F(b))/(1--F(b)). Let

=;g() and e=((-)d())
irs we assume ha b0= or P(bo)--P(bo--)=O and ha P is non-
laiee. hen e>O and a central limi aroximaion (el. [, ])
implies

nd so
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lim 1 log (1/v(x, t))=<lim 1 log ([x/Z] !)= 1
x log x x log x

Since b/ and b can be arbitrarily close to b0, we obtai’n (14).
When F is lattice or F(bo)--F(bo--)0, (14) is verified in a similar

too, if we note v(x, t)=[ v(x--y, t/2)dG/.(y) after seeingway

inf<.exv(x, t/2)0 for any L0. This inequality iollows from
the fact that the support of dG(x) agrees with X, which would be
easily seen in the case that F is centered lattice or F is not lattice. In
the remaining case there are real numbers 0d such that /d is
irrational and F has positive jumps at and at -d, and therefore
dG(x) has positive mass at each point of H= {n+m(--d)" n, m= 1,
2,...}. It is left to the reader to show that H is dense in R. The
proof of Lemma 2 is finished.

4. Proof o Theorem Let c. c’ c*c. c c and u(x, t) be
a solution of (1) with an initial unction satisfying the condition of
Theorem. After some comparison arguments, a crude application of
Lemma 2 shows that or any 0, there is e0 such that u(x, 1)
_>_eexp(-x), x eX. Accordingly it follows from Lemma 1 that
there is a smooth positive unction w such that u(x, 1)>__w(x), x e X
and w satisfies (12) simultaneously for c<=c<=c. Let u.(x, t) be the
solution of (1) starting from this w. Then
(15) u,(x,t)<=u(x, t+l) or all xeX and t0.
Since v(x, t)=(/t)u,(x+ct, t) satisfies v/t=c(v/x)+Av+Bv,
where A and B are bounded continuous functions of (x, t), and v(., 0)
-cw’+M(w,- ), we see u,(x+ct, t) is nondecreasing in t
Now let c.<=c<=c and w(x)--lim_u,(x+ct, t). Then w is a sta-
tionary solution o 3u/3t=c(3u/3x)+M(u, ). In other words, w(x--ct)
is a solution of (1). Since w(x)>=u,(x,O)=w(x), it is found that
wo(x-ct)>=u,(x, t), or, what is the same, w(x+(c’--c)t)>=u,(x+ct, t).
This implies limw(x)0. Similarly li__mm_w(x)0. Thus
--in wo(x)O and so we have w(x--ct)>_y(t), where y is a solution
o dy/dt=M(y, y) with y(0)=/. By virtue of (4), y(t)
-----1. Consequently u,(ct, t) $1 for c,<=c<=c. By (15) this completes
the proof.
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