17. Zeta Functions in Several Variables Associated with Prehomogeneous Vector Spaces. I^{*)}

Functional Equations

By Fumihiro SATO

Department of Mathematics, Rikkyo University (Communicated by Shokichi Iyanaga, M. J. A., Jan. 12, 1981)

1. In this note we introduce zeta functions in several variables associated with prehomogeneous vector spaces defined over the rational number field Q and discuss their functional equations and analytic continuations. Our results are generalizations to those of M. Sato and T. Shintani [4], in which they treated the zeta functions in single variable.

2. Let G be a connected linear algebraic group defined over Q. Let ρ_1 and ρ_2 be Q-rational representations of G on finite dimensional complex vector spaces E and F with Q-structures. Put $\rho = \rho_1 \oplus \rho_2$ and $V = E \oplus F$. Here we do not exclude the case where $E = \{0\}$. In the present note we always assume that (G, ρ, V) is a prehomogeneous vector space (briefly a p.v.) (for the definition of p.v. and other basic notions in the theory of p.v.'s, we refer to M. Sato and T. Kimura [3]). We assume further that

(A.1) F is a Q-regular subspace of (G, ρ, V) in the following sense.

Definition. The invariant subspace F is called a *Q*-regular subspace of (G, ρ, V) if there exists a relative invariant $P(x) = P(x^{(1)}, x^{(2)})$ $(x^{(1)} \in E, x^{(2)} \in F)$ of (G, ρ, V) with coefficients in Q such that the Hessian

$$\det\Bigl(rac{\partial^2 P}{\partial x_i^{(2)}\partial x_j^{(2)}}(x^{\scriptscriptstyle(1)},\,x^{\scriptscriptstyle(2)})\Bigr)$$

of P with respect to the variables $x_1^{(2)}, \dots, x_{\dim F}^{(2)}$ in F is not identically zero.

Let F^* be the vector space dual to F and ρ_2^* be the representation of G on F^* contragredient to ρ_2 . Put $\rho^* = \rho_1 \oplus \rho_2^*$ and $V^* = E \oplus F^*$.

Lemma 1. The triple (G, ρ^*, V^*) is a prehomogeneous vector space and F^* is a Q-regular subspace of (G, ρ^*, V^*) .

We call (G, ρ^*, V^*) the partially dual p.v. of (G, ρ, V) with respect to the **Q**-regular subspace F.

^{*)} Supported by the Grant in Aid for Scientific Research of the Ministry of Education No. 574050.

Let S and S^{*} be the singular sets of (G, ρ, V) and (G, ρ^*, V^*) respectively.

Lemma 2. (i) The set $S(resp. S^*)$ is a proper algebraic subset of $V(resp. V^*)$ defined over Q.

(ii) The number of Q-irreducible components of S with codimension 1 is equal to that of S^* .

(iii) S is a hypersurface in V if and only if S^* is a hypersurface in V^* .

Let P_1, \dots, P_n (resp. Q_1, \dots, Q_n) be **Q**-irreducible polynomials defining the **Q**-irreducible components of S (resp. S^*) with codimension 1. It is known that these polynomials are relative invariants of G. Denote by χ_1, \dots, χ_n (resp. $\chi_1^*, \dots, \chi_n^*$) the **Q**-rational characters of G corresponding to P_1, \dots, P_n (resp. Q_1, \dots, Q_n):

$$P_i(\rho(g)x) = \chi_i(g)P_i(x),$$

$$Q_i(\rho^*(g)x^*) = \chi_i^*(g)Q_i(x^*)$$

 $(1 \leq i \leq n, g \in G, x \in V, x^* \in V^*).$

Let $X_{\rho}(G)$ (resp. $X_{\rho*}(G)$) be the subgroup of the group of Q-rational characters of G generated by χ_1, \dots, χ_n (resp. $\chi_1^*, \dots, \chi_n^*$). Then

Lemma 3. (i) The group $X_{\rho}(G)$ coincides with $X_{\rho*}(G)$.

(ii) The group $X_{\rho}(G) = X_{\rho^*}(G)$ is a free abelian group of rank n with two systems of generators $\{\chi_1, \dots, \chi_n\}$ and $\{\chi_1^*, \dots, \chi_n^*\}$.

(iii) The character det $\rho_2(g)^2$ is contained in $X_{\rho}(G)$.

Define an *n* by *n* unimodular matrix $U = (u_{ij})$ and an *n*-tuple $\lambda = (\lambda_1, \dots, \lambda_n)$ of half-integers by the following formulas:

$$\chi_i = \prod_{j=1}^n \chi_j^{*u_{ij}} \quad (1 \le i \le n),$$

det $\rho_2(g)^2 = \prod_{i=1}^n \chi_i(g)^{2\lambda_i}.$

3. We fix a subgroup G_R^+ of the group of real points of G containing the identity component.

Lemma 4. The number of $\rho(G_R^+)$ -orbits in $V_R - S_R$ is equal to that of $\rho^*(G_R^+)$ -orbits in $V_R^* - S_R^*$.

 \mathbf{Let}

$$V_R - S_R = V_1 \cup \cdots \cup V_{\nu}$$

and

$$V_{R}^{*}-S_{R}^{*}=V_{1}^{*}\cup\cdots\cup V_{\nu}^{*}$$

be their G_R^+ -orbital decompositions.

Denote by $S(V_R)$ and $S(V_R^*)$ the spaces of rapidly decreasing functions on V_R and V_R^* respectively. Let $dx^{(1)}$, $dx^{(2)}$ and $dx^{*(2)}$ be Euclidean measures on E_R , F_R and F_R^* respectively. Put

$$dx = dx^{(1)} dx^{(2)} \quad (x = (x^{(1)}, x^{(2)}) \in V_R)$$

and

$$dx^* = dx^{(1)}dx^{*(2)}$$
 $(x^* = (x^{(1)}, x^{*(2)}) \in V_R^*).$

F. SATO

Set

$$\Phi_{j}(f;s) = \int_{V_{j}} \prod_{i=1}^{n} |P_{i}(x)|^{s_{i}} f(x) dx$$

and

$$\Phi_{j}^{*}(f^{*};s) = \int_{V_{j}^{*}} \prod_{i=1}^{n} |Q_{i}(x^{*})|^{s_{i}} f^{*}(x^{*}) dx^{*}$$

The integrals
$$\Phi_j$$
 and Φ_j^* converge absolutely for $\operatorname{Re} s_1, \dots, s_n \in \mathbb{C}^n$.
have analytic continuations meromorphic functions of s in \mathbb{C}^n (cf. I.N.

Bernstein and S.I. Gelfand [1]).

Define a partial Fourier transform \hat{f}^* of $f^* \in \mathcal{S}(V_R^*)$ with respect to F^* by setting

$$\hat{f}^{*}(x) = \hat{f}^{*}(x^{(1)}, x^{(2)}) = \int_{F_{R}^{*}} f^{*}(x^{(1)}, x^{*(2)}) \exp(2\pi i \langle x^{(2)}, x^{*(2)} \rangle) dx^{*(2)}.$$

Theorem 1. In addition to (A.1), suppose that

(A.2) the singular set S of (G, ρ, V) is a hypersurface in V. Then the functions Φ_1, \dots, Φ_r and $\Phi_1^*, \dots, \Phi_r^*$ satisfy the following functional equations:

$$\Phi_{i}(\hat{f}^{*}; s) = \left(\prod_{i=1}^{n} c_{i}^{-s_{i}}\right) (2\pi i)^{d^{*}(s)} \gamma(s) \sum_{j=1}^{\nu} a_{ij}(s) \Phi_{j}^{*}(f^{*}; (s+\lambda)U)$$

$$(f^{*} \in \mathcal{S}(V_{R}^{*})).$$

Here c_1, \dots, c_n are non-zero complex numbers,

 $d^*(s) = d_1 s_1 + \dots + d_n s_n$ with $d_i = the \ degree \ of \ Q_i(x^{(1)}, x^{*(2)})$ with respect to $x^{*(2)}$, $\gamma(s) \ is \ a \ Gamma \ factor \ of \ the \ form$ $\gamma(s) = \prod \Gamma(L_k(s))^{\sigma_k} \quad (\sigma_k = 1 \ \text{or} \ -1)$

for some inhomogeneous linear forms $L_k(s)$ in s, and $a_{ij}(s)$ are polynomial functions in $\exp(\pm \pi i s_1), \dots, \exp(\pm \pi i s_n)$.

The theorem is a gereralization of Theorem 4 in [2], Theorem 1 in [4] and Theorem 1.1 in [5]. By suitably modifying the argument in [2] and [5], we are able to show the theorem.

4. Put

 $\Gamma = \{g \in G_Z \cap G_R^+; \ \chi(g) = 1 \qquad \text{for all} \quad \chi \in X_\rho(G) = X_{\rho^*}(G) \}.$

Let M and N be Γ -invariant lattices in E_q and F_q respectively. Denote by N^* the lattice in F_q^* dual to N. Put $L = M \oplus N$ and $L^* = M \oplus N^*$. The lattice L (resp. L^*) is a Γ -invariant lattice in V_q (resp. V_q^*). Let dgbe a right invariant measure on G_R^* . Define a character \varDelta of G_R^* by the formula

$$d(hg) = \Delta(h) dg.$$

We assume that

(A.3) the integrals

$$Z(f,L;s) = \int_{\mathcal{G}_R^+/\Gamma} \prod_{i=1}^n |\chi_i(g)|^{s_i} \sum_{x \in L-S} f(\rho(g)x) dg \quad (f \in \mathcal{S}(V_R))$$

and

$$Z^{*}(f^{*}, L^{*}; s) = \int_{G^{+}_{R}/\Gamma} \prod_{i=1}^{n} |\chi_{i}^{*}(g)|^{s_{i}} \sum_{x^{*} \in L^{*}-S^{*}} f^{*}(\rho^{*}(g)x^{*}) dg$$
$$(f^{*} \in \mathcal{S}(V^{*}_{R}))$$

are convergent absolutely when $\operatorname{Re} s_1, \dots, \operatorname{Re} s_n$ are sufficiently large.

For an $x \in V_{\mathcal{Q}}$ (resp. $x^* \in V_{\mathcal{Q}}^*$), let G_x (resp. G_{x^*}) be the isotropy subgroup of G at x (resp. x^*) and put

 $G_x^+ = G_x \cap G_R^+, \quad \Gamma_x = G_x \cap \Gamma, \quad G_{x^*}^+ = G_{x^*} \cap G_R^+, \quad \Gamma_{x^*} = G_{x^*} \cap \Gamma.$ By the assumption (A.3), we get the next lemma.

Lemma 5. (i) For any $x \in V_Q - S_Q$ (resp. $x^* \in V_Q^* - S_Q^*$), the group G_x^+ (resp. $G_{x^*}^+$) is a unimodular Lie group and the volume of G_x^+/Γ_x (resp. $G_{x^*}^+/\Gamma_{x^*}$) with respect to a Haar measure is finite.

(ii) There exist $\delta = (\delta_1, \dots, \delta_n)$ and $\delta^* = (\delta_1^*, \dots, \delta_n^*)$ in Q^n such that

$$|\det \rho(g)| \varDelta(g)^{-1} = |\chi_1(g)|^{\delta_1} \cdots |\chi_n(g)|^{\delta_n}$$

and

$$|\det \rho^*(g)| \varDelta(g)^{-1} = |\chi_1^*(g)|^{\delta_1^*} \cdots |\chi_n^*(g)|^{\delta_n^*}$$

for all $g \in G_R^+$.

It is easy to see that $\delta^* = (\delta - 2\lambda)U$.

For any $x \in V_Q - S_Q$ (resp. $x^* \in V_Q^* - S_Q^*$), normalize a Haar measure $d\mu_x$ (resp. $d\mu_{x^*}$) on G_x^+ (resp. $G_{x^*}^+$) by the formula

$$\begin{split} &\int_{\mathcal{G}_{R}^{+}} F(g) dg = \int_{\mathcal{G}_{R}^{+}/\mathcal{G}_{x}^{+}} \prod_{i=1}^{n} |P_{i}(\rho(g)x)|^{-\delta_{i}} d(\rho(g)x) \int_{\mathcal{G}_{x}^{+}} F(gh) d\mu_{x}(h) \\ &\left(\operatorname{resp.} \int_{\mathcal{G}_{R}^{+}} F(g) dg = \int_{\mathcal{G}_{R}^{+}/\mathcal{G}_{x}^{+}} \prod_{i=1}^{n} |Q_{i}(\rho^{*}(g)x^{*})|^{-\delta_{i}^{*}} d(\rho^{*}(g)x^{*}) \int_{\mathcal{G}_{x}^{+}} F(gh) d\mu_{x^{*}}(h) \right) \\ &(F \in L^{1}(G_{R}^{+}, dg)). \end{split}$$

Set $L_i = L \cap V_i$ and $L_i^* = L^* \cap V_i^*$ $(1 \leq i \leq \nu)$. Denote by $\Gamma \setminus L_i$ (resp. $\Gamma \setminus L_i^*$) the set of all Γ -orbits in L_i (resp. L_i^*). Also set

$$\xi_j(L;s) = \sum_{x \in \Gamma \setminus L_j} \mu(x) \prod_{i=1}^n |P_i(x)|^{-s_i}, \quad \mu(x) = \int_{G_x^+ / \Gamma_x} d\mu_x$$

and

$$\xi_{j}^{*}(L^{*};s) = \sum_{x^{*} \in \Gamma \setminus L_{j}^{*}} \mu(x^{*}) \prod_{i=1}^{n} |Q_{i}(x^{*})|^{-s_{i}}, \quad \mu(x^{*}) = \int_{G_{x^{*}}^{+}/\Gamma_{x^{*}}} d\mu_{x^{*}}$$

 $(1 \leq j \leq \nu, s \in C^n).$

Lemma 6. Let B (resp. B^*) be the domain of absolute convergence of Z(f, L; s) (resp. $Z^*(f^*, L^*; s)$). Then the Dirichlet series $\xi_1(L; s), \dots, \xi_r(L; s)$ (resp. $\xi_1^*(L^*; s), \dots, \xi_r^*(L^*; s)$) are convergent absolutely for $s \in B$ (resp. $s \in B^*$). Moreover the following equalities hold:

$$\begin{split} &Z(f,L;s) = \sum_{i=1}^{\nu} \xi_i(L;s) \Phi_i(f;s-\delta) \quad (s \in B, f \in \mathcal{S}(V_R)), \\ &Z^*(f^*,L^*;s) = \sum_{i=1}^{\nu} \xi_i^*(L^*;s) \Phi_i^*(f^*;s-\delta^*) \quad (s \in B^*, f^* \in \mathcal{S}(V_R^*)). \end{split}$$

Definition. The series $\xi_1(L; s), \dots, \xi_\nu(L; s)$ (resp. $\xi_1^*(L^*; s), \dots, \xi_\nu^*(L^*; s)$) are called the zeta functions associated with (G, ρ, V) and L (resp. (G, ρ^*, V^*) and L^*).

Let D (resp. D^*) be the convex hull of $(B^*U^{-1}+\lambda) \cup B$ (resp. $(B-\lambda)U \cup B^*$). Then Theorem 1 and Lemma 6 yield the following theorem.

Theorem 2. If the conditions (A.1), (A.2) and (A.3) hold, then

(i) the series $\xi_1(L; s), \dots, \xi_{\nu}(L; s)$ (resp. $\xi_1^*(L^*; s), \dots, \xi_{\nu}^*(L^*; s)$) have analytic continuations to meromorphic functions of s in D (resp. D^*).

(ii) The following functional equations hold for $s \in D$:

$$\xi_i^*(L^*; (s-\lambda)U) = v(N) \left(\prod_{i=1}^n c_i^{\delta_i - \delta_i}\right) (-2\pi i)^{d^*(s-\delta)} \gamma(s-\delta)$$
$$\sum_{j=1}^\nu a_{ji}(s-\delta) \xi_j(L;s) \quad (1 \le i \le \nu)$$

where $v(N) = \int_{F_{R}/N} dx^{(2)}$.

By Theorem 2 and Proposition 24, Remark 26 of $[3, \S 4]$, we obtain the next theorem.

Theorem 3. Let (G, ρ, V) be a p.v. satisfying the conditions (A.1) and (A.3) for $E = \{0\}$ and F = V. Assume further that G is a reductive algebraic group. Then the zeta functions $\xi_1(L; s), \dots, \xi_n(L; s)$ associated with (G, ρ, V) and a Γ -invariant lattice L in V_Q have analytic continuations to meromorphic functions of s in \mathbb{C}^n .

Remarks. (1) Theorems 2 and 3 were proved in [4] under the assumptions that $E = \{0\}$, G is reductive and S is an absolutely irreducible hypersurface (hence n=1).

(2) It frequently occurs that a given p.v. has several Q-regular subspaces. Then the associated zeta functions satisfy a number of functional equations.

(3) The result of T. Suzuki [6] can be regarded as a concrete example of our theory. The full exposition of this paper with some other examples will appear elsewhere.

References

- I. N. Bernstein and S. I. Gelfand: Meromorphic property of the functions P². Funct. Anal. Appl., 3, 84-86 (1969).
- [2] M. Sato: Theory of prehomogeneous vector spaces (notes by T. Shintani in Japanese). Sugaku no Ayumi, 15, 85-157 (1970).
- [3] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their invariants. Nagoya Math. J., 65, 1-155 (1977).
- [4] M. Sato and T. Shintani: On zeta functions associated with prehomogeneous vector spaces. Ann. of Math., 100, 131-170 (1974).

No. 1]

- [5] T. Shintani: On Dirichlet series whose coefficients are class numbers of integral binary cubic forms. J. Math. Soc. Japan, 24, 132-188 (1972).
- [6] T. Suzuki: On zeta functions associated with quadratic forms of variable coefficients. Nagoya Math. J., 73, 117-147 (1979).