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Class Number Calculation and Elliptic Unit. I

Cubic Case

By Ken NAKAMULA
Department of Mathematics, Tokyo Metropolitan University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1981)

Let K be,,,a real cubic number field with the discriminant D0.
In the following, an effective algorithm will be given, to calculate the
class number h and the fundamental unit ( 1) of K at a time.

Angell [1] has given a table of h and 1 of K for D--20000. In
the special case when K-Q(/), a pure cubic number field, Declekind
[5] has given an analytic method to calculate h. In such a pure cubic
case, Dedekind’s method has been improved by several authors, see [3]
.and [13]. In all these algorithms, however, it is necessary to compute. by Voronoi’s algorithm, see [6, pp. 22-290], before the calculation
of h.

Our method does not need Voronoi’s algorithm, and h and e are
calculated at a time. The starting point of the method is. the index
formula on elliptic units, given by Schertz, see [11] and [12], and the
idea of the algorithm is learaed from G. Gras and M.-N. Gras [8].
There is a similar algorithm to compute the class number and funda-
mental units of a real quartic number field which is not totally real and
.contains a quadratic subfield, see the author’s [10]. The author expects
that such an algorithm will be generalized to calculate the class number
of a non-galois number field whese galois closure is. an abelian exten-
sion over an imaginary quadratic number field.

1. Illustration of algorithm. The class number h of K is given
by the index of the subgroup generated by the so called "elliptic unit"

] ( 1) of K, of which the definition will be given in 4, in the group
of positive units of K, see [11]:
( 1 ) ]e=e, i.e. h--(($1)
Our methocl consists of the following steps:

( i to compute an approximate value of ] ( 4),
(ii) to compute the minimal polynomial of ] over Q (Lemma 2),
(iii) for any unit $( 1) of K, to give an explicit upper bouad B()

of (@}: (}) (Proposition 1),
(iv) for any unit(1) of K and for a natural number/, to judge

whether a real number ( 1) is an element to K or not, and to com-
pure the minimal polynomial of / over Q if it is an element of K
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(Proposition 2).
Now, the computation of h and goes as follows. Determine the

minimal polynomial of ] over Q by (i) and (ii). Put h(])= 1 and com-
pute B(]) by (iii). Put =, and test whether the set

S() {PIP prime number, p<B(), / e K}
is empty or not by (iv). If S() is empty, then= and h= h(). If
S() is not empty, take the smallest prime p in S(), and let = /,
B(D=B()/p and h(D=ph(). The minimal polynomial o e over Q can
be calculated by (iv). Next, put = and repeat the above procedure
or by using (iv). Then S(D becomes an empty set in a finite number
o2 steps.

2. Upper bound of/t. The following Artin’s lemma essentially
gives an upper bound o the index of a subgroup of the group of units
of K.

Lemma 1 (Artin [2]). Let (>1) be a unit of K. Then the absolute
value of the discriminant D(D of is smaller than 4+24, i.e.

<4 +24.
Note that D() is a non-zero multiple of the discriminant D of K

since is. irrational. It is easy to see that (ID]--24)/4>1. Then we
have

Proposition 1. Let (>1) be a unit of K. Then
(@> <>)<3 log ()/log ((IDI--24)/4).

On account of (1), we have
Corollary. Let be the elliptic unit of K. Then the class num-

ber h of K satisfies
h<3 log (]e)/1Og ((I D I-- 24)/4).. p.th root of units. For ny positive unit of K, we denote

by s() and t() the absolute trace of and 1/ respectively. The fol-
lowing lemma enables us to calculate the minimal polynomial of a unit
of K over Q from an approximate value of the unit.

Lemma 2. Let(1) be a unit of K. Then s() is a rational inte-
ger such that Is()--l2v//(2) and that 1/+(s()-) is a rational
integer, and t() is given by t()= 1/+(s()--).

For any rational integers s and t, define r,=r,(s, t) (Z-- 1, 2, 3,
as follows:

r s, r. s 2t, r s 3st+ 3,
r,=sr,_l--tr,_.+r,_ if/__> 4.

Then we have
Proposition 2. Let (> 1) be a unit of K and ,a be a natural num-

ber. Put e=-(>l). The real number belongs to K if and only if
there exists a rational integer u such that

lu-1<2/1/(<2),
r,(u, v) s() and r,(v, u) t(),
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where v is the nearest rational integer to 1/+(u-D. If belongs to
K, then

s(D=u and t(D=v.
This proposition gives us an effective method to judge whether the

/-th root of a unit (> 1) of K is an element of K or not. It only uses
s(), t() and an approximate value of .

4. tlliptic unit. In order to define the elliptic unit , of K, let
us. prepare some notations. Let the imaginary quadratic number field

=Q(,/D) and the discriminant of X be -d. Then the galois closure
of K/Q is the composite field L: =KX, which is dihedral of degree 6
over Q and cyclic cubic over X. The abelian extension L/X has a ra-
tional conductor (f) with a natural number f, and D=--fd. More-
over, L is contained in the ring class field X modulo f over . All
these facts are known in Hasse [9]. Let (f) be the ring class group
of v modulo f. By the classical theory of complex multiplication, see
Deuring [7], the ring class field X=E(Y()) or e lit(f), where ]() is the
ring class invariant as usual, and there is the canonical isomorphism

2" !)t(f)_Gal (XfiX) ](V)() ](V-) or , ’ e Y(f).
Let 1: =2-(Gal (XffL)), take and fix a class of (f) which does not
belong to lI. For e Y(f), denote by - a complex number with its
imaginary part positive such that Z-+Z e . Then the elliptic unit

] of K is defined, independent of the choice of and ., by the follow-
ing"

( 2 ) ] /Im (T)/lm (T)I(T)/(T)I.
Here (z) is the Dedekind eta-function:

](z)=exp (iz/12) I-[ (1-exp (2irz)).

Now we should see how an approximate value of is computed.
Suppose that Y(f) and 1/have been given already. Then, since we can
take - so that Im (T)>__//2 as in [4], we can compute ; by (2), using
the following lemma for example.

Lemma :. Let z x+iy be a complex number with the imaginary
part y O, and put

N-1

R,(z) --y/6+ log II--exp (2irz) .
Then

ilogl(z)]._R(z)l (2-exp(--2uNy)) exp (--2Ny)
(1--exp (--2Ny))(1--exp (--2y))

If the discriminant D of K is given, it is easy to compute f. Then
we can count out explicitly every subgroup 1I of (f) which may cor-
respond to K as in Hasse [9]. Thus the class numbers and the funda-
mental units of all cubic number fields with the same discriminant
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D can be computed as described above. In pure cubic case, i.e. K
-Q(/) with a cube 2ree natural number m, the corresponding sub-
group 1I of (f) is perfectly determined from the value m, see [5].
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