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Introduction. In this note we give an estimate of the roots of
b-functions of certain isolated singularities (Theorem 4.4).

The theory of b-functions and the proof given here are based on
Yano [5]. In the real analytic case, the same estimate is given in
Varchenko [4].

The author is grateful to Dr. Tamaki Yano for many valuable
advices.

1o Let G be the set of germs of holomorphic functions at the
origin 0 of C+, =([3/Ox0, ",O/OXn], Bp--D where / is the /-

function.
For any f e (C), there exist P(s) e [s], b(s) e C[s] such that P(s)f+

--b(s)f (Bernstein [1], BjSrk [2]). These b(s) form an ideal and the
generator of the ideal is called the b-function of f and denoted by b(s).
If f(0)=0, b(s) is divided by s+ 1 and we put b(s)=b(s)/(s+ 1). (s)

{P(s) e _q)[s] P(s)fs=O}.
Let F/(f) be the Newton polyhedron of f and {.,..., .} the set

of all the n-dimensional faces of F+(f) not contained in {x" l-[ --0 x=0},
y={(x0, ..., Xn)" d.x=l}. Then d(x)=d, defines a degree on ,
and we put X= d,x/x.

2. From now on we assume that f e (f(0)=0) has an isolated
singularity and is nondegenerate with respect to F/(f).

2.1. Theorem (Kashiwara-Yano). cr is a root of (s) if and only
if there exists a nonzero element of Bpt satisfying the following two
conditions"
(2.1.1) f(x)A--O and 3f/3xA=O, i=O, n,
(2.1.2) for any P(s) e fl(s), P()=O.

2.2. Theorem (Teissier [3]). For any ideal I of , there exists

o e N such tha$, for any e N, P+--P.P, where i denotes the integral
closure of I.

2.3. Proposition. Le$ I=(xof/3Xo, ., xnf/xn)O. For any
.,eN and g eO, g eP if and only if d(g)v, /=1, ...,m.

3. Construction of an operator P(s) e fl(s). An element of
_@[s]f is uniquely expressed as a finite sum Y, a(x)f[i], a e , f[i]
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=S(S--1)...(s--i+ 1)f-’, f[0] =f’.
3.1. Definition. d (, a,(x)f[i])=inf {d(a,)--i), k=l, ...,m.
3.2. Proposition. If d (Y, a,f[i])=d< c, then we have the in-

equality d((s+d-X) (Y, a,f[i])) >d.
Proof. By 3.1, d(a,)>=d+i, and we let a* be the d-homogeneous

part of a, of degree d+ i.
(3.2.1) (s-X) (Y], a,f[i])= Y, {a(f-Xf)f[i+ l]+(i-X)a,f[i]}.
Since d(f-Xf)>1, the d-homogeneous part of (3.2.1) of degree d is
Y], (i-X)a*f[i]=-d Y, a*f[i]. Thus the d-homogeneous part of
(’s+ d-X)(Y, a,f[i]) of degree d is zero.

3.3. Let I=(xof/3Xo,...,x3f/3x)(C) and let uoeN have the
property of Theorem 2.2.

We put P0(s)=l, and for k_>_l, we define P(s) inductively"
(3.3.1) P(s)=(s+d,(P_lfs)-X,)P_I,
where k’ is such an integer that 1_ k’_<_m and k’--k mod m.

Choose N e N so that
(3.3.2) d(Pf) >=Vo, k= 1, ..., m.

Let
(3.3.3) Pf= Y,51 af[i].
Then (3.3.2) implies
(3.3.4) d(a)>=uo+i, i=1, ...,N, k=l, ...,m,
or equivalently
(3.3.4)’ a e I 1% i= 1, ., N.

Let
(3.3.5) a= ,lj,= uj(x)(xf/x), u e

Put
(3.3.6) P’=P--z__ uz(x)(xa/ax).
Then
(3.3.7) pfs= a’(x)f[i], a’ e I po.

Continuing the same reduction N times, we get an operator P(s)
e c(s) of the form"
(3.3.8) P(s)=P(s)--ll_ uj(x)(x/x), u e.

4. An estimation of roots of x(s). 4.1. Lemma. Let P
zJ e Bpt, PzJ--O, and let d be a degree on ), Bpt (d()--0). Let P*,
be, respectively, the homogeneous parts of P, of the lowest degrees.
Then we have P*J* =0.

4.2. Lemma. Assume that 1 e B, is homogeneous with respect
to d, then Xz/=(d(/)-Yq, d(x))zl.

4.3. Let be a root of (s) and let P(s) e (s) be that of (3.3.8).
By Theorem 2.1, there exists z/e Bpt with the properties (2.1.1), (2.1.2).
In particular P(a)zl=0.

Recall that P is the homogeneous part of P of degree 0 with
respect to all d and d(P-P)>= o.
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Let A be the d-homogeneous part of A_ of the lowest degree,
A0-A. Then by 4.1, PA--O for k_l.

Since is homogeneous with respect to all d, we have, by 4.2,
(4.3.1) P()A ]-I= (o+d’(P_fg-d(A,)+ d’(x))A,.
Hence we obtain
(4.3.2) ->=, d(x), --1, ..., m.

4.4. Theorem. Assume that f e has an isolated singularity
and is nondegenerate with respect to F/(f). Pu $0=inf {$" (, --., )
e F/(f)}. Then, for any root of f(s), we have --_t1.

Proof. ; is equal to inf{ d(x)} and (4.3.2) proves the the-
orem.
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