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111. On Regularity Properties for some Nonlinear
Parabolic Equations™

By Hiroki TANABE
Department of Mathematies, Osaka University

(Communicated by Kdsaku YoSIDA, M. J. A., Dec. 12, 1981)

The contents of this paper consist of some amelioration and sup-
plement to the previous paper [4].

Let 2 be a not necessarily bounded domain in R¥, N >2, which is
uniformly regular of class C* and locally regular of class C* in the sense
of F. E. Browder [1]. The boundary of 2 is denoted by I". Let

a(u, v)=_[ (% Oy ou_ v +i b, ou v+ cuv)dx
2 \i,j=1 ox, ox; =t OJx,
be a bilinear form defined in H'(2) X H'(£2). The coefficients a,,, b, are
bounded and continuous in 2 together with first derivatives and c is
bounded and measurable in £. The matrix {a,(2x)} is uniformly posi-
tive definite in 2. It is assumed that ¢=0, ¢—> Y, 6b,/02,=0 a.e. in
0.

Let j(x, r) be a function defined on I" X R such that for each fixed
xz el j(x,7) is a proper convex lower semicontinuous function of » and
J(x, ) =7(x,0)=0. The subdifferential of j with respect to r is denoted
by 8. We assume that for each te R and 2>>0 (1+28(x, -))7'(?) is a
measurable function of x (cf. B. D. Calvert-C. P. Gupta [2]). For a
function « defined on I" () denotes the function j(x, u(x)), x e I'.

Set

I''={xel:px,0=R} r,=r\r..
I, is the part of I" where the boundary condition is of Dirichlet type.
We assume that >, b, >0 on I', where v=(,, ---,v,) is the outer-
normal vector to I". Set
V={ue H'( ) :u=0o0n I}

Let ¥'(x) be a function belonging to H'(2) N L'(L2) such that ¥<0

on I',, We assume that
fueV:ux=¥ a.e., j(ul;) e LI}
is not empty, or equivalently j(¥'*|;) € L\(I).

The norm of L*(2) and H'(2) are denoted by | | and || | respec-
tively. The inner product of L*(2) as well as the pairing between V
and V* are both denoted by (, ). The norm of L?({2) is denoted by | |,.

The mapping A which is multivalued in general is defined as fol-

)

This research was partially supported by Grant-in-Aid for Scientific Re-
search 56540085 and partially by the Takeda Science Foundation.



474 H. TANABE [Vol. 57(A),

lows: ue D(A) and Au>s fif fe L(Q), ¥<ueV, ju|) e L'(I") and
au, v—u)+ j . J‘(vlp)dl‘—_[r Al =(f, v—u)

for every v such that ¥<v eV, j®|,) € L'(I").

It is easily shown that A is maximal monotone in L*(2), and D(A)
={uel}(Q):u=V a.e.}.

For ¥ <wu, e L*(2) and f e W"'(0, T ; L*(2)) set

S, (Huy=lim ] [1+1(A— f(i t))] 4,
n—oo §=1 n n
(cf. M. G. Crandall-A. Pazy [3]).

Lemma 1. If f,feLXQ), f—feL"(2), 1<p<oco, then for 2>0

A+24)f—A+24)'f e L*(Q) and
|A+24) " f — A+ 24 f [, < = e

From Lemma 1 the following proposition readily follows.

Proposition 1. If u,, 4, L*(2), u,—1, e L*(2), 1<p<oo, then
S (u,—S ()i, € L*(2) and

|S,(t)uo—S,Et)ﬁ0|p_£_Iu—ﬁolp.
Lemma 2. If Aus f, Alis f, u—it e L?(Q), 1<p<2, then
(f=Fs lu—aP-2(u—a) +|u—al
>{cp [ =2 av-o if N>2
e, lu—ap for any q €12, o) if N=2.

Using Lemma 2 and following the argument of L. Véron [5], pp.
175-176 we get

Proposition 2. Suppose ¥ <u, e L*(Q), ¥ <4, e L*(Q), u,— U,
e L*(2), then

IS (), — S (E) |
< {c,,(l+t'”“’“‘2“>/2) |26y — o], if N>2
= e, A+t |uy—1|, for any e >p~' —271 if N=2.

From Propositions 1 and 2 we get the following result.

Theorem 1. For f e W"(0, T ; L*Q)) the mapping S,(t) can be ex-
tended to a mapping from {u e L*(2): u=¥ a.e.} to L*(2) for any 1<p
<2. For any w, such that ¥ <u, e L*(2), 1<p<2, S,)uy—u, tn L*(2;)
as t—0 for any R>0 where 2,=2N{x:|z|<R}.

Let A be the operator defined as A with j replaced by the function
7 such that j(z, -)=j(x, -) =the indicator function of {0} for x e I', and
Jj(x, )=0for x e I',, Namely the boundary condition on I', is replaced
by that of Neumann type by this replacement.

Let L and _£ be the linear operators on V to V* and H'(2) to V*
defined by

(Lu, v)=a(u,v), u,veV,
(Lu,v)=a(,v), uc H'(D), veV
respectively. Let w be the solution of the equation
w +Aw > 1+, w0)=u;,
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and v be the solution of the linear equation in V*
vV +Lo=L¥+ 1+, v(0)=u;.
Then it is shown that
wésf(')uoé(w“v)++v-
Hence we get
Theorem 2. For U<wu,e L*(2), 1<p<2, we have for 0<t<T

IS (B)ug| S CEY 2707 g |, -8 IIWDHWHJZ |+ ()] ds.

The right derivative of S (t)u, exists in (0, T]. Arguing as in [4]
we get

Theorem 3. If in addition to the assumption of Theorem 2 f
belongs to W0, T; L'(2), r=2, then the right derivative D*S (H)u,
which exists in the strong topology of L*(R2) belongs to L™(2), and

ID*S, O], < {7 g |y (F |4+67 [T +[v]+¢ | A0)
+t==([ 17@1 ds+[[ s1.77@)] s)

13
+[17@) ds}

where y=N{®'—r"1/2, a=N@*'—r")/2, v is an arbitrary element of
D(A) and A° is the minimal cross-section of A.

In what follows we assume that either £ is bounded or there exists
a function ¥ e L(2) such that a@, v) <@, v) for any v satisfying 0<v
e VN L~(2). The latter condition is satisfied if ¥ e W*(Q), JA¥ e L'(9),
¥ /on<0 on I',, where .1 is the linear differential operator associated
with the bilinear form a(u, v) and 9/an is the conormal derivative with
respect to .

Theorem 4. Under the assumptions stated above the mapping
A, defined by

G(A,)=the closure of G(A) N(L*(2) X L*(2)) in L*(2) X L*(2)

where G(A) denotes the graph of A is m-accretive in L*(2) for 1<p<2,
and

Under the assumptions of Theorem 4 if ¥<u,e L?(2) and f
e W0, T'; L*(Q)), then S,(t)u, € L*(2) and S ,(H)u,—u, in LP(2) as t—0.
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