102. Analytic Hypo-Ellipticity of a System of Microdifferential Equations with Non-Involutory Characteristics

By Toshinori ÔAKU

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1981)

We study the analytic hypo-ellipticity of a system of microdifferential equations whose characteristic variety (in the complex domain) has the form $V = V_1 \cup V_2$; here V_1 and V_2 are regular involutory complex submanifolds with non-involutory intersection. We also assume that the system has regular singularities along V (cf. [4]). In particular, the system $(P_1P_2I_m + A)u = 0$ satisfies the above conditions if P_1 and P_2 are scalar operators such that the Poisson bracket $\{\sigma(P_1), \sigma(P_2)\}$ does not vanish (where σ denotes the principal symbol), A is an $m \times m$ matrix of operators of lower order, and I_m is the unit matrix of degree m (see Corollary in § 1).

Our result (Theorem in § 1) extends a part of the results of Kashiwara-Kawai-Oshima [3] to more general systems. We believe that our result is new even for single equations (see Example 2). The operator discussed in Corollary is contained in the class discussed by Treves [8] if $\sigma(P_2)$ is the complex conjugate of $\sigma(P_1)$. See also Grušin [1] for a class of single partial differential equations.

§1. Statement of the results. Let M be an *n*-dimensional real analytic manifold and X be its complexification. We denote by \mathcal{C}_M the sheaf on $T^*_M X$ of microfunctions, and by \mathcal{C}_X the sheaf on T^*X of micro-differential operators of finite order. Let \mathcal{M} be a system of micro-differential equations (i.e. a coherent \mathcal{C}_X -module) defined on an open subset Ω of T^*X-X . Suppose that the characteristic variety of \mathcal{M} has the form $V = V_1 \cup V_2 \subset \Omega$. We assume the following conditions (see [4] for notations):

(A.1) V_1 and V_2 are *d*-codimensional homogeneous regular involutory submanifolds of Ω , and $V_0 = V_1 \cap V_2$ is non-singular.

(A.2) V_1 and V_2 intersect normally, i.e., $T_pV_1 \cap T_pV_2 = T_pV_0$ for any $p \in V_0$.

(A.3) $\dim V_1 = \dim V_2 = \dim V_0 + 1.$

(A.4) rank V_1 = rank V_2 = rank V_0 .

(A.5) \mathcal{M} has regular singularities along V.

Let p_0 be a point of $V_0 \cap T^*_M X$. We can find a neighborhood $\Omega' \subset \Omega$ of p_0 and a coherent sub- \mathcal{E}_r -module \mathcal{M}_0 of $\mathcal{M}|_{\Omega'}$ such that $\mathcal{E}_x \mathcal{M}_0 = \mathcal{M}|_{\Omega'}$. We set $\overline{\mathcal{M}}_0 = \mathcal{M}_0/\mathcal{E}(-1)\mathcal{M}_0$. Then we also assume

(A.6) $\overline{\mathcal{M}}_0$ is a locally free $\mathcal{O}_V(0)$ -module of rank m.

The polynomial $e_{12}(\lambda, p, \mathcal{M}_0)$ in λ is defined for $p \in V_0 \cap \Omega'$ as in [4]. Let $\lambda = \lambda_1, \dots, \lambda_m$ be the roots of the equation $e_{12}(\lambda, p_0, \mathcal{M}_0) = 0$. We assume, in addition, the following two conditions:

(B.1) The generalized Levi form of V_1 (cf. [6, Chapter III]) has at least one negative eigenvalue at p_0 .

(B.2) $\lambda_j \notin \{0, 1, 2, \cdots\}$ for $j = 1, \cdots, m$.

Theorem. Under the assumptions (A.1)–(A.6) and (B.1) and (B.2), the system \mathcal{M} is micro-locally analytic hypo-elliptic at p_0 ; i.e., we have $\mathcal{H}_{om_{\mathcal{C}_X}}(\mathcal{M}, \mathcal{C}_M)_{p_0} = 0.$

Remark. The conclusion of Theorem is also valid if we replace the conditions (B.1) and (B.2) with

(B.1)' The generalized Levi form of V_2 has at least one negative eigenvalue at p_0 .

 $(B.2)' \quad \lambda_j \notin \{-1, -2, -3, \cdots\} \text{ for } j=1, \cdots, m.$

For a homogeneous holomorphic function f defined in a neighborhood (in T^*X) of p_0 , we denote by f^c the complex conjugate of f with respect to T^*_MX ; i.e., f^c is the unique holomorphic function such that $f^c = \bar{f}$ holds on T^*_MX .

Corollary. Let P_1 and P_2 be microdifferential operators of order l_1 and l_2 respectively defined in a neighborhood of $p_0 \in T_M^*X - M$. Set $l = l_1 + l_2$ and let $A = (A_{ij})$ be an $m \times m$ matrix of microdifferential operators of order at most l-1 defined in a neighborhood of p_0 . We assume the following conditions:

$$\sigma(P_1)(p_0) = \sigma(P_2)(p_0) = 0, \qquad \{\sigma(P_1), \sigma(P_2)\}(p_0) \neq 0, \\ \{\sigma(P_1), \sigma(P_1)^c\}(p_0) < 0.$$

We also assume that no eigenvalue of the matrix

 $(\sigma_{l-1}(A_{ij})(p_0)/\{\sigma(P_1), \sigma(P_2)\}(p_0))$

is a non-negative integer. Then the homomorphism

 $P_1P_2I_m + A: (\mathcal{C}_M)_{p_0}^m \to (\mathcal{C}_M)_{p_0}^m$

is injective.

Now we give some examples which are contained neither in the class discussed in [3] nor in that discussed in [8]. We set $x = (x_1, x_2) \in \mathbf{R}^2$ and $D_j = \partial/\partial x_j$.

Example 1. Set

 $P = (D_1 + \sqrt{-1}x_1D_2)(D_1 - 2\sqrt{-1}x_1D_2)I_m + A_1(x)D_1 + A_2(x)D_2 + B(x);$

here A_1 , A_2 , B are $m \times m$ matrices of real analytic functions defined in an open subset U of \mathbb{R}^2 . Assume that no eigenvalue of the matrix $A_2(0, x_2)$ belongs to $\{3\sqrt{-1} j; j \in \mathbb{Z}\}$ for $(0, x_2) \in U$. Then P is analytic hypo-elliptic in U; i.e., if f is a column vector of m hyperfunctions defined in an open subset U' of U such that each component of Pf is real analytic in U', then each component of f is real analytic in U'.

No. 9]

Example 2. Set

 $P = (D_1 + \sqrt{-1}x_1D_2)(D_1 - \sqrt{-1}(x_1 + x_2)D_2) + a_1(x)D_1 + a_2(x)D_2 + b(x);$ here $a_1(x), a_2(x)$, and b(x) are real analytic functions defined in a neighborhood of $0 = (0, 0) \in \mathbb{R}^2$. Assume that $a_2(0) \notin \{2\sqrt{-1} j; j \in Z\}$. Then P is analytic hypo-elliptic at 0; i.e., if f is a hyperfunction defined in a neighborhood of 0 such that Pf is real analytic in a neighborhood of 0, then f is real analytic in a neighborhood of 0.

§2. Sketch of the proof. Since the proof of Theorem can be reduced to that of Corollary, we give a sketch of the proof of Corollary. Let $z = (z_1, \dots, z_n)$ be a local coordinate system of X and $(z, \zeta) = (z_1, \dots, z_n, \zeta_1, \dots, \zeta_n)$ be the corresponding local coordinate system of T^*X . We use the notation $D_j = \partial/\partial z_j$. Using methods of [2] and [7], we can find a complex contact transformation φ defined in a neighborhood of p_0 such that

 $\varphi(\{\sigma(P_1)=0\})=\{z_1=0\}, \qquad \varphi(\{\sigma(P_2)=0\})=\{\zeta_1=0\}, \\ \text{and } \varphi(T_M^*X)=T_N^*X \text{ in a neighborhood of } \varphi(p_0)=(0,\,dz_n) \text{ ; here } N=\{h(z,\bar{z})=0\} \text{ with a real valued real analytic function } h \text{ defined in a neighborhood of } 0\in X \text{ such that } h(0)=0,\,d_zh(0)=dz_n, \text{ and that the Levi form of } h \text{ is positive definite. By a quantized contact transformation } \varPhi \text{ associated with } \varphi, \text{ we may assume that } \end{cases}$

 $\Phi^{-1}(P_1P_2I_m + A) = z_1D_1I_m - B;$

here B is an $m \times m$ matrix of microdifferential operators of order at most 0 commuting with z_1 and D_1 , and the real part of each eigenvalue of $\sigma_0(B)(0, dz_n)$ is negative. (See Theorem 1 of [4].) Then it is sufficient to show that the homomorphism

 $z_1 D_1 I_m - B : \mathcal{H}^1_Z(\mathcal{O}_X)^m_0 \to \mathcal{H}^1_Z(\mathcal{O}_X)^m_0$

is injective; here \mathcal{O}_x denotes the sheaf of holomorphic functions on X and $Z = \{z \in X; h(z, \overline{z}) \geq 0\}$. The injectivity of this homomorphism can be proved by the method developed in [5].

References

- V. V. Grušin: On a class of elliptic pseudodifferential operators degenerate on a submanifold. Math. USSR Sbornik, 13, 155-185 (1971).
- M. Kashiwara and T. Kawai: Some applications of boundary value problems for elliptic systems of linear differential equations. Ann. of Math. Studies, no. 93, Princeton Univ. Press, Princeton, pp. 39-61 (1979).
- [3] M. Kashiwara, T. Kawai, and T. Oshima: Structure of cohomology groups whose coefficients are microfunction solution sheaves of systems of pseudodifferential equations with multiple characteristics. I; II. Proc. Japan Acad., 50, 420-425; 549-550 (1974).
- [4] T. Öaku: A canonical form of a system of microdifferential equations with non-involutory characteristics and branching of singularities. Proc. Japan Acad., 57A, 205-209 (1981).
- [5] ----: The Cauchy-Kovalevskaja theorem for pseudo-differential operators

of Fuchsian type and its applications. Kokyuroku RIMS, Kyoto Univ., no. 361, pp. 131-150 (1979).

- [6] M. Sato, T. Kawai, and M. Kashiwara: Microfunctions and pseudo-differential equations. Lect. Notes in Math., vol. 287, Springer, Berlin-Heidelberg-New York, pp. 265-529 (1973).
- [7] P. Schapira: Conditions de positivité dans une variété symplectique complexe. Application à l'étude des microfonctions. Ann. scient. Éc. Norm. Sup. (4)14, 121-139 (1981).
- [8] F. Treves: Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the ö-Neumann problem. Comm. in P. D. E., 3, 475-642 (1978).