101. Calculus on Gaussian White Noise. III

By Izumi Kubo and Shigeo Takenaka
Department of Mathematics, Faculty of Sciences, Nagoya University
(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1981)

In the previous parts of this series [11], [12], we have given a systematic treatment of calculus on Gaussian white noise, which is a reformulation of Hida's works [1], [2]. In this part we will show further relations between Hida's approach and ours. We will use the same notations and definitions as in Part I and Part II.
§ 8. Multiple Wiener integrals. Here we assume that the Borel measure ν on T has no atoms. Let $\mathcal{E} \subset E_{0}=L^{2}(T, \nu) \subset \mathcal{E}^{*}$ be a triplet as in $\S 5$ of Part II, and let μ be the measure of Gaussian white noise on \mathcal{E}^{*} with characteristic functional $\exp \left[-\|\xi\|_{0}^{2} / 2\right]$. The multiple Wiener integral $I_{n}\left(F_{n}\right)$ of F_{n} in $L^{2}\left(T^{n}, \nu^{n}\right)$ is defined as follows:

First, $I_{1}\left(F_{1}\right)$ is the limit of $\left\langle x, \xi_{k}\right\rangle$ in $\left(L^{2}\right)=L^{2}\left(\mathcal{E}^{*}, \mu\right)$, where $\left\{\xi_{k}\right\}$ is any sequence in \mathcal{E} with $\left\|\xi_{k}-F_{1}\right\|_{0} \rightarrow 0$, as $k \rightarrow \infty$. Specially, put $W(B)$ $\equiv I_{1}\left(I_{B}\right)$, where I_{B} denotes the indicator function of a Borel set B with $\nu(B)<\infty$. Secondary, let $\alpha=\left\{B_{j}\right\}$ be a countable Borel partition of T with $\nu\left(B_{j}\right)<\infty$ and let α^{n} be the collection of all subsets of T^{n} of the form $C=B_{j(1)} \times B_{j(2)} \times \cdots \times B_{j(n)}, \quad B_{j(k)} \in \alpha, \quad B_{j(k)} \cap B_{j(m)}=\phi$ for $k \neq m$. For such a set C in α^{n}, define

$$
I_{n}\left(I_{c}\right) \equiv \prod_{k=1}^{n} W\left(B_{j(k)}\right) .
$$

Define $I_{n}\left(G_{n}\right) \equiv \sum a_{k} I_{n}\left(I_{C_{k}}\right)$ for $G_{n}=\sum a_{k} I_{c_{k}}$ with $C_{k} \in \alpha^{n}$. Then we can define $I_{n}\left(F_{n}\right)$ by

$$
\begin{equation*}
I_{n}\left(F_{n}\right) \equiv \operatorname{l.i.m.} . I_{n}\left(F_{n}^{\alpha}\right), \quad F_{n}^{\alpha} \equiv \sum \nu^{-1}(C)\left(F_{n}, I_{c}\right) I_{c}, \tag{8.1}
\end{equation*}
$$

where $\alpha \uparrow$ means refinements.
Theorem 8.1. (i) For $F_{n} \in L^{2}\left(T^{n}, \nu^{n}\right)$, put $\varphi(x)=I_{n}\left(F_{n}\right)$, then we have

$$
(\mathcal{S} \varphi)(\xi)=\int_{T^{n}} \boldsymbol{F}_{n}\left(u_{1}, \cdots, u_{n}\right) \xi\left(u_{1}\right) \cdots \xi\left(u_{n}\right) d \nu^{n}\left(u_{1}, \cdots, u_{n}\right)
$$

(ii) For any ψ in $\left(L^{2}\right)$, there exist $F_{n} \in \hat{L}^{2}\left(T^{n}, \nu^{n}\right), n \geq 0$, such that $\psi(x)$ is decomposed into the following orthogonal sum;

$$
\psi(x)=\sum_{n=0}^{\infty} I_{n}\left(F_{n}\right) \quad \text { and } \quad\|\psi\|_{\left(L^{2}\right)}^{2}=\sum_{n=0}^{\infty} n!\left\|F_{n}\right\|_{\mathcal{L}^{2}\left(T^{n}, \nu^{n}\right)}^{2} .
$$

We now remark that the symmetric L^{2}-space $\hat{L}^{2}\left(T^{n}, \nu^{n}\right)$ is naturally identified with the symmetric tensor product space $E_{0}^{\hat{\otimes} n}$. By Theorems 6.3 and 6.5 , we have

Theorem 8.2. For $G_{n} \in E_{0}^{\hat{\otimes} n}, A^{*}\left(G_{n}\right) 1=I_{n}\left(G_{n}\right)$ holds in $\left(L^{2}\right)$. Moreover, for $\varphi \in \mathscr{H}^{(p)}, p \geq 0$, there exists a Ξ in $\exp \left[\hat{\otimes} E_{p}\right]$ such that

$$
\varphi(x)=\sum_{n=0}^{\infty} A^{*}\left(\pi^{n} \boldsymbol{\Xi}\right) 1=\sum_{n=0}^{\infty} I_{n}\left(\pi^{n} \Xi\right)
$$

§9. Hida's approach. In this section, take $T=R$, the reals, and let ν be the ordinal Lebesgue measure on R. Let \mathcal{E} be the space of rapidly decreasing functions. Put

$$
D \equiv\left(1+x^{2}-\frac{d^{2}}{d x^{2}}\right) \quad \text { and } \quad(\xi, \zeta)_{p} \equiv\left(D^{p} \xi, D^{p} \zeta\right)_{0}, \quad p \geq 0 .
$$

Let E_{p} be the completion of \mathcal{E} with respect to the norm $\|\cdot\|_{p}$ and let $E_{-p}=E_{p}^{*}$ be the dual of E_{p}. Then \mathcal{E} is the projective limit of E_{p}, so we can apply previous discussions on the triplet $\mathcal{E} \subset E_{0} \subset \mathcal{E}^{*}$. In particular, define $B(t)$ by
(9.1) $B(t)=W([0, t])$, for $t \geq 0$ and $=-W([t, 0])$, for $t<0$.

This is the Brownian motion in Hida's articles. Hida's definition of $\dot{B}(t)$ by using \mathcal{I}-transform can be rewritten by using \mathcal{S}-transform and the following relations are obtained;

$$
\begin{align*}
B(t) & =\mathcal{S}^{-1} \lim _{h \downarrow 0} \mathcal{S}\left(\frac{B(t+h)-B(t)}{h}\right)=\mathcal{S}^{-1} \lim _{h \downarrow 0} \frac{1}{h} \int_{0}^{h} \xi(t+u) d u \tag{9.2}\\
& =\mathcal{S}^{-1}(\xi(t))=\partial_{t}^{*} 1
\end{align*}
$$

Hida's definition of the multiplication by $\dot{B}(t)$ is equivalent to

$$
\begin{equation*}
\dot{B}(t) \psi(x)=\mathcal{S}^{-1} \lim _{h \downarrow 0} \mathcal{S}\left(\frac{B(t+h)-B(t)}{h}\right) \psi . \tag{9.3}
\end{equation*}
$$

By Theorem 7.2 in Part II, we have the following relations

$$
\begin{equation*}
\dot{B}(t) \psi=\left(\partial_{t}^{*}+\partial_{t}\right) \psi=x(t) \cdot \psi . \tag{9.4}
\end{equation*}
$$

Remark 9.1. For each fixed $t \in T, x(t)$. does not operate on $\left(L^{2}\right)$ naturally. However, if $\psi \in\left(L^{2}\right)$ is measurable with respect to the σ field \mathscr{B}_{t} generated by $\{B(s) ; s<t\}$, then the limit (9.3) exists in $\mathscr{H}^{(-1)}$ and coincides with $\partial_{t}^{*} \psi$ (see [13]).

Hida has introduced the renormalization of the polynomials of $\dot{B}(t)$'s as follows. Let $H_{n}(u ; \alpha)$ be the Hermite polynomials given by (5.9). Let t_{1}, \cdots, t_{k} be different points in $T=R$. Then the renormalization of $\dot{B}\left(t_{1}\right)^{n_{1}} \cdots \dot{B}\left(t_{k}\right)^{n_{k}}$ is given by

$$
\begin{align*}
& \mathcal{S}^{-1} \lim _{\Delta_{j} \downarrow\left\{t_{j}\right\}} \mathcal{S} \prod_{j=1}^{k} H_{n_{j}}\left(\frac{\Delta_{j} B}{\left|\Delta_{j}\right|} ; \frac{1}{\left|\Delta_{j}\right|}\right) \tag{9.5}\\
& \quad=\mathcal{S}^{-1} \lim \prod_{j=1}^{k}\left(\frac{1}{\left|\Delta_{j}\right|} \int_{\Delta_{j}} \xi(u) d u\right)^{n_{j}} \\
& \quad=\mathcal{S}^{-1} \prod_{j=1}^{k} \xi\left(t_{j}\right)^{n_{j}},
\end{align*}
$$

which is denoted by $\prod_{j=1}^{k} H_{n j}\left(\dot{B}\left(t_{j}\right) ; 1 / d t_{j}\right)$ formally. In our formulation, the convergence can be regarded as the strong convergence in \mathscr{G}^{*} (or more precisely in $\mathscr{S}^{(-1)}$). By Theorem 6.1 and Lemma 7.3,

$$
\begin{equation*}
\prod_{j=1}^{k} H_{n_{j}}\left(\dot{B}\left(t_{j}\right) ; \frac{1}{d t_{j}}\right)=\prod_{j=1}^{k} \partial_{t_{j}}^{* n_{j_{j}}}=: \prod_{j=1}^{k}\left(x\left(t_{j}\right) \cdot\right)^{n_{j}}: 1 . \tag{9.6}
\end{equation*}
$$

Hida's generalized random measure $M_{n}(d t)$ can be expressed in the form;

$$
\frac{1}{n_{1}!\cdots n_{k}!} \int d t_{1} \cdots d t_{k} f_{n}\left(t_{1}, \cdots, t_{k}\right): x\left(t_{1}\right) \cdot{ }^{n_{1}} \cdots x\left(t_{k}\right) \cdot \cdot^{n_{k}}: 1
$$

Partial derivatives of $\psi(x)=I_{n}\left(f_{n}\right)$ with $f_{n} \in \mathcal{E}^{\hat{\otimes} n}$ by $\dot{B}(t)$ have been defined by Hida [1] as follows

$$
\begin{equation*}
\frac{\partial}{\partial \dot{B}(t)} \psi=\mathscr{I}^{-1}\left(\left\{\frac{\delta}{i \delta \xi(t)}\left(\mathscr{I} \psi \cdot \exp \left[\frac{1}{2}\|\xi\|_{0}^{2}\right]\right)\right\} \exp \left[-\frac{1}{2}\|\xi\|_{0}^{2}\right]\right) . \tag{9.7}
\end{equation*}
$$

By the relation (5.5), we can rewrite it as

$$
\begin{equation*}
\frac{\partial}{\partial \dot{B}(t)} \psi=\mathcal{S}^{-1}\left(\frac{\delta}{\delta \xi(t)}\right) \mathcal{S} \psi, \tag{9.8}
\end{equation*}
$$

here we note that this definition is identical with ∂_{t} in (6.1). Since we have formally that

$$
\begin{aligned}
\frac{\delta}{\delta \xi(t)}(\mathcal{S} \psi)(\xi) & =\frac{\delta}{\delta \xi(t)} \int \psi(x+\xi) d \mu=\int \frac{\delta}{\delta \xi(t)} \psi(x+\xi) d \mu \\
& =\int \frac{\partial}{\partial x(t)} \psi(x+\xi) d \mu=\mathcal{S}\left(\frac{\partial}{\partial x(t)} \psi(x)\right)
\end{aligned}
$$

the relation (9.8) clarifies the reason why (9.7) gives us a natural differentiation. Actually, we have shown that ∂_{t} is a derivation (see Theorem 7.6).
§ 10. A simple application. First, we remark that the following theorem tells us a relation between Ito integral and our calculus.

Theorem 10.1. Let $f(t, x)$ be \mathscr{B}_{t}-adapted function with $\int\|f(t, x)\|_{0}^{2} d t<\infty$, then

$$
\begin{equation*}
\int d t \partial_{t}^{*} f(t, x)=\int f(t, x) d B(t) \tag{10.1}
\end{equation*}
$$

holds, where the right hand side means Ito's stochastic integral.
A. Shimizu [14] has discussed on the following bilinear stochastic differential equation by using Wiener expansion of its solution :

$$
\left\{\begin{array}{l}
d \psi=\left\{\mathcal{L}_{v} \psi+a(t) \psi+b(t)\right\} d t+\{c(t) \psi+d(t)\} d B(t) \tag{10.2}\\
\psi(0, v, \cdot)=g(v), v \in R^{d} .
\end{array}\right.
$$

Suppose that the coefficients a, b, c and d are all continuous in t and that the operator \mathcal{L}_{v} has a solution of the Cauchy problem :

$$
\begin{equation*}
\frac{d}{d t} p(t, v)=\mathcal{L}_{v} p(t, v), p(0, v)=g(v) \tag{10.3}
\end{equation*}
$$

We consider a solution ψ of (10.2) such that $d / d t$ and \mathcal{L}_{v} operate to ψ continuously in \mathcal{I}^{*}. Put $U(t, v ; \xi)=(\mathcal{S} \psi(t, v, \cdot))(\xi)$. Since ∂_{t}^{*} corresponds to Ito integral, we have the following equation;

$$
\left\{\begin{array}{l}
\frac{d}{d t} U=\left\{\mathcal{L}_{v}+a(t)+c(t) \xi(t)\right\} U+b(t)+d(t) \xi(t) \tag{10.4}\\
U(0, v ; \xi)=g(v)
\end{array}\right.
$$

A solution of (10.4) can be expressed in the form

$$
\begin{equation*}
U=p(t, v) V(t ; \xi)+V(t, \xi) \int_{0}^{t}(b(s)+d(s) \xi(s)) V(s, \xi)^{-1} d s \tag{10.5}
\end{equation*}
$$

where $V(t ; \xi)=\exp \left[\int_{0}^{t}(\alpha(s)+c(s) \xi(s)) d s\right]$.
We have now to get the inverse formula of U under \mathcal{S}. Then by Lemma 5.9, we have

$$
\begin{equation*}
\beta_{t}=\mathcal{S}^{-1} V=\exp \left[\int_{0}^{t} a(s) d s+\int_{0}^{t} c(s) d B(s)-\frac{1}{2} \int_{0}^{t} c(s)^{2} d s\right] \tag{10.6}
\end{equation*}
$$

and together with Theorem 6.1, we have

$$
\mathcal{S}^{-1}\left(\xi(s) \exp \left[\int_{s}^{t} c(r) \xi(r) d r\right]\right)=\partial_{s}^{*} \exp \left[\int_{s}^{t} c(r) d B(r)-\frac{1}{2} \int_{s}^{t} c(r)^{2} d r\right]
$$

Since Theorems 7.6 and 6.1 can be extended to a more general case, it holds that

$$
\partial_{s}^{*}\left(\beta_{t} \cdot \beta_{s}^{-1}\right)=\beta_{t}\left(\partial_{s}^{*} \beta_{s}^{-1}\right)-\left(\partial_{s} \beta_{t}\right) \cdot \beta_{s}^{-1}
$$

and

$$
\partial_{s} \beta_{t}=c(s) I_{[0, t]}(s) \beta_{t} .
$$

Therefore we have a solution of (10.2);

$$
\begin{equation*}
\psi=\beta_{t}\left\{p(t, v)+\int_{0}^{t} \beta_{s}^{-1}(b(s)-c(s) d(s)) d s+\int_{0}^{t} \beta_{s}^{-1} d(s) d B(s)\right\} \tag{10.7}
\end{equation*}
$$

which is given in [14]. The solution is unique if and only if the solution of (10.3), is unique.
§ 11. Formulae related to causality. An inverse formula of the transform \mathcal{S} is given as follows from Theorems 6.5 and 8.2 ;

Theorem 11.1. For a given $U(\xi) \in \mathscr{F}$,

$$
\begin{equation*}
\mathcal{S}^{-1} U=\sum_{k=0}^{\infty} \frac{1}{k!} \int U^{(k)}\left(0 ; t_{1}, \cdots, t_{k}\right) d W\left(t_{1}\right) \cdots d W\left(t_{k}\right) \tag{11.1}
\end{equation*}
$$

Moreover, if $U(\xi)$ is in $\mathscr{F}^{(0)}$, then $U(\xi)$ is E_{0}-differentiable arbitrary times and $U^{(k)}\left(0 ; \eta_{1}, \cdots, \eta_{k}\right)$ has an L^{2}-kernel $U^{(k)}\left(0 ; t_{1}, \cdots, t_{k}\right)$ which gives the formula (11.1) also.

This is originally given by Hida-Ikeda [5]. Now we discuss the same case as in $\S 10$. Let \mathcal{B}_{t} be the σ-field generated by $\{B(s) ; s<t\}$ and let P_{t} be the orthogonal projection from $\left(L^{2}\right)=L^{2}\left(\mathcal{E}^{*}, \mu\right)$ to $\left(L_{t}^{2}\right)$ $=\left\{\psi \in\left(L^{2}\right) ; \psi\right.$ is \mathscr{B}_{t}-measurable $\}$.

Theorem 11.2. (i) A given ψ in \mathcal{H} is in $\left(L_{t}^{2}\right)$ if and only if $\partial_{s} \psi$ $=0$ for $s>t$.
(ii) $P_{t} \psi=\int_{0}^{t} \partial_{s}^{*} P_{s} \partial_{s} \psi d s+\int \psi d \mu$

$$
\psi=\int \partial_{s}^{*} P_{s} \partial_{s} \psi d s+\int \psi d \mu
$$

(iii) $S P_{t} \psi(\xi)=S \psi\left(I_{(-\infty, t)} \xi\right)$.

References

[1] Hida, T.: Analysis of Brownian functionals. Carleton Math. Lect. Notes, no. 13, second ed. (1978).
[2] --: Brownian motion. Applications of Math., vol. 11, Springer Verlag (1980).
[5] Hida, T., and Ikeda, N.: Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral. Proc. Fifth Berkeley Symp. on Math. Statist. and Probab., vol. 2, part I, pp. 117-143 (1967).
[11] Kubo, I., and Takenaka, S.: Calculus on Gaussian white noise I. Proc. Japan Acad., 56A, 376-380 (1980).
[12] --: Calculus on Gaussian white noise II. ibid., 56A, 411-416 (1980).
[13] Endo, K.: On bilinear stochastic differential equations. Master Thesis, Nagoya University (1980).
[14] Shimizu, A.: Construction of a solution of a certain evolution equation. Nagoya Math. J., 66, 23-36 (1977).
[15] Jondral, F.: Some remarks about generalized functionals of complex white noise. ibid., 81, 113-122 (1981).

