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101. Calculus on Gaussian White Noise. III

By Izumi KUBO and Shigeo TAKENAKA
Department of Mathematics, Faculty of Sciences,

Nagoya University

(Communicated by K,6saku YOSIDA, M. ,1. A., Nov. 12, 1981)

In the previous parts of this series [11], [12], we have given a
systematic treatment of calculus on Gaussian white noise, which is a
reformulation of Hida’s works [1], [2]. In this part we will show
further relations between Hida’s approach and ours. We will use
the same notations and definitions as in Part I and Part II.

8. Multiple Wiener integrals. Here we assume that the Borel
measure on T has no atoms. Let cEo=L(T, v)c’* be a triplet as
in 5 of Part II, and let/2 be the measure of Gaussian white noise on
6’* with characteristic functional exp [-11[I/2]. The multiple Wiener
integral I(F) of F in L(T’, ) is defined as follows

First, I(F) is the limit of (x, } in (L)=L(C*,/), where {$} is
any sequence in ’ with II-Fll0--0, as k-oo. Specially, put W(B)
=L(I), where I denotes the indicator function of a Borel set B with
v(B)< oo. Secondary, let a={B} be a countable Borel partition of T
with v(B)< oo and let a be the collection of all subsets of T of the
form C=B(,B()...B(n), B()e, B()B()= for k:/:m.
For such a set C in a, define

I(Ic)-- W(B()).
Define I(G)--, aI(Ic) for Gn= , aIcwith C . Then we can
define In(F) by
(8.1) I(F)--l.i.m. I(FO, FT-- ,-(C)(F,Ic)Ic,

where a means refinements.
Theorem 8.1. (i) For F L(T, ), put (x):In(F), then we

have

f gn(Ul, .., Un)(Ul)’’" (Un)dpn(Ul, ..., Un).(3)()
JT

(ii) For any in (L), there exist F e e(Tn, pn), n_O, 8.uch that
(x) is decomposed into the following orthogonal sum;

(x)= , I(F) and II) , n. IIF I]2"(Tn,yn).2
n=0 n=O

We now remark that the symmetric L-space/:(T, ) is naturally
identified with the symmetric tensor product space Eon. By Theorems
6.3 and 6.5, we have
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Theorem 8.2. For G e Eo, A*(Gn)I= I(G) holds in (L). More-
over, for e a((), p >_0, there exists a in exp [()E] such that

?(x)= A*(u)l= I(=).
n=O n=O

9. Hida’s approach. In this section, take T=R, the reals, and
let, be the ordinal Lebesgue measure on R. Let be the space of
rapidly decreasing unctions. Put

D (l+x d) and (, )--(D, D)0, p> 0.
dx

Let E be the completion of with respect to the norm ll" II and let
E_=E be the dual of E. Then is the projective limit o E, so
we can apply previous discussions on the triplet cE0*. In par-
ticular, define B(t) by
(9.1) B(t)=W([O,t]), for t0 and =-W([t, 0]), for
This is the Brownian motion in Hida’s articles. Hida’s definition of
B(t) by using if-transform can be rewritten by using -transform and
the following relations are obtained;

(9.2) B(t) - lim (.B(t+ h)--B(t)) - lim 1- (,+u)du
,0 h ,0 h

=-((t))=1.
Hida’s definition of the multiplication by B(t) is equivalent to

(9.3) B(t),(x): - lim (.B(t+ h)--B(t)).k,0 h
By Theorem 7.2 in Part II, we have he following relations
(9.4) B(t)+=(3 +,)+= x(t) +.

Remark 9.1. For each fixed t T, x(t). does no operate on (L2)
naturally. However, if + (L0 is measurable with respect to the
field , generated by (B(s);s<t), then the limit (9.3) exists in
and coincides with 3q (see [13]).

Hida has introduced the renormalization of the polynomials of
B(t)’s as ollows. Let H(u;) be the Hermite polynomials given by
(5.9). Le t, ..., t be different points in T=R. Then the reormali-
zaion of B(t)... B(t) is given by

(9.5) S_ lim S H (B 1 )
=-lim ( 1 ; (u)du)=1 j

=- (t),
j=l

which is denoted by =Hn(B(t);1/dt) formally. In our formula-
tion, the convergence can be regarded as the strong convergence in
(or more precisely in d((-)). By Theorem 6.1 and Lemma 7.3,
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, I-[ (x(t).)" 1.
---1 ----1

Hida’s generalized random measure M(d) can be expressed in he
orm

1 [ dr1 .dtf(tl, .., t)" x(t) .’ x(t). 1.
n .n J

Partial derivatives of (x)=I(f) with f e by B(t) have been
defined by Hida [1] as follows

(9.7) -By the relation (5.5), we can rewrite it as

oB(t"=3- (t)
here we note that this definition is identical with O in (6.1). Since we
have formally

()()_
(t) (t) o

+(x $)d

(x+)d=(t(x)),
the relation (9.8) clarifies the reason why (9.7) gives us a natural dif-
erentiation. Actually, we have shown that is a derivation (see
Theorem 7.6).

10. A simple application. First, we remark that the following
theorem tells us a relation between Ito integral and our calculus.

Theorem 10.1. Let f(t, x) be -adapted function with

[]f(t, x)][]dt then

holds, where the right hand side means Ito’s stochastic integral.
A. Shimizu [14] has discussed on the following bilinear stochastic

differential equation by using Wiener expansion o its solution"

dq {+a(t)q+ b(t)}dt+ {c(t)q + d(t)}dB(t)(10.2)
(0, v, )= g(v), v e R.

Suppose that he coecients a, b, c and d are all continuous in t and
that the operator f has a solution of the Cauchy problem:

d(10.3) dP(t, v)= fp(t, v), p(O, v)= g(v).

We consider a solution
continuously in *. Put U(t,v ;$)=(3q(t,v, .))(). Since corre-
sponds to Ito integral, we have the ollowing equation;
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d-d-u-- {.V-t-a(t) - c(t)(t)} U-t- b(t) - d(t)(t)
(10.4) dt

U(0, v ;)--g(v).
A solution of (10.4) can be expressed in the form

(10.5) U-=- p(t, v)V(t )- V(t, ) .Io (b(s) -t- d(s)(s))Y(s, )-ds,

where V(t ) exp (a() + e()())d
We have now to ge he inverse formula of U under . hen by

Lemma g.9, we have
1 c(s)ds](10.6) fl:-V:exp [Ioa(s)ds+I: c(s)dB(s)--

and together with Theorem 6.1, we have
1-((s) exp [I: c(r)(r)dr])=O exp [I: c(r)dB(r)-- I: c(r)dr]"

Since Theorems 7.6 and 6.1 can be extended to a more general case, it
holds that

and

Therefore we have a solution of (10.2);

(10.7) =t(p(t, V)+f: flT(b(s)-c(s)d(s))ds+I: fl;d(s)dB(s)}
which is given in [14]. The solution is unique i and only if the solu-
tion of (10.3), is unique.

11. ormulae related to causality. An inverse ormula of the
transform is given as follows from Theorems 6.5 and 8.2;

Theorem 11.1. For a given U()

(11.1) N- U= 1 U((0; t, t)dW(t).., dW(t).
=0

Moreover, i U()
time g U(O , ., ) h L-erel U(O t, ., t) hieh

give the ormla (11.1) lo.
his is originally given by Hida-Ikeda [g]. Now we discuss he

same ease as in 10. Le be he -field generated by {B();<t}
and le P be he orhogonal rojeeion from (L)=L(*, ) o (L)
{ e (L); is -measurable}.
Theorem

=0 or >t.

(ii) Pt::o P3pds+
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(iii) 3Ptr() q,(I(_ ,t)).
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