100. An Average Type Result on the Number of Primes Satisfying Generalized Wieferich Condition

By Leo Murata
Department of Mathematics, Faculty of Science,
Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1981)

1. Statement of results. In 1909 Wieferich ([1]) proved that if an odd prime p satisfies the condition

$$
2^{p-1}-1 \neq 0\left(\bmod p^{2}\right),
$$

then the case I of Fermat's Last Theorem is true for this prime p, i.e. under the condition $(x y z, p)=1$, there exists no integral solution for the Diophantine equation $x^{p}+y^{p}=z^{p}$. Moreover, it is now known (see for example [2]) that we can deduce the same conclusion, if an odd prime p satisfies

$$
a^{p-1}-1 \neq 0\left(\bmod p^{2}\right)
$$

for some prime value $a, 2 \leqslant a \leqslant 43$.
Now we shall call
(*)

$$
a^{p-1}-1 \equiv 0\left(\bmod p^{2}\right)
$$

the generalized Wieferich condition for a (a may be any natural number). We define for real $x>0$,

$$
F_{a}(x)=\{p ; p \text { is an odd prime } \leqslant x, p \text { satisfies }(*)\}
$$

We have an average type result as to the cardinal $\# F_{a}(x)$ of $F_{a}(x)$, which states as follows:

Theorem 1. Let δ be an arbitrary fixed real number satisfying $1 / 2<\delta<1$. We have, if $x \geqslant 286$,

$$
\# F_{a}(x)=\log \log x+\theta\left((\log \log x)^{\delta}\right)+\left(C-\frac{1}{2}\right)+\frac{1}{2} \theta\left((\log x)^{-2}\right)
$$

for all a such that $2 \leqslant a \leqslant x^{4}$ with at most

$$
2 x^{4}(\log \log x)^{1-28}
$$

exceptions of a, where $C=\gamma+\sum_{p: \text { prime }}\{\log (1-1 / p)+1 / p\}$ and γ is Euler's constant. ($f(x)$ being positive valued function of $x, \theta(f(x))$ denotes a function of x whose absolute value $\leqslant f(x)$.)

Similarly we have:
Theorem 2. Let D be an arbitrary fixed real number >0 and $y \geqslant x^{6}$. We defined for a natural number a and real $x>0$, $F_{a}^{(3)}(x)=\left\{p ; p\right.$ is an odd prime $\left.\leqslant x, a^{p-1}-1 \equiv 0\left(\bmod p^{3}\right)\right\}$.
Then we have

$$
\left|\# F_{a}^{(3)}(x)-\sum_{\substack{3 \leqslant p<x \\ p \leqslant \text { prime }}} \frac{1}{p^{2}}\right|<D
$$

for all a such that $2 \leqslant a \leqslant y$ with at most $D^{-2}\left(\sum_{\substack{3 \leqslant p \leq x \\ p: \operatorname{prime}}}\left(p^{2}-1\right) / p^{4}\right)\left(x^{6}+y\right)$ exceptions of a.

We can deduce from Theorem 2:
Corollary. We put for real $M>0$,

$$
A_{M}=\left\{a ; a^{p-1}-1 \neq 0\left(\bmod p^{3}\right) \text { for any odd prime } p \leqslant M\right\} .
$$

Then the natural density of A_{M} is larger than 0.7 for any M.
We can prove these theorems by means of an analytic method of Warlimont ([3]).
2. Sketch of the proof of Theorem 1. Let χ_{p} be a primitive character $\bmod p^{2}$, i.e. taking a primitive $p(p-1)$-th root of unity as value for a primitive root $\bmod p^{2}$. (We assume p to be odd prime.) Put

$$
W(a, p)=\frac{1}{p} \sum_{i=0}^{p-1} \chi_{p}^{i(p-1)}(a) .
$$

Then it is easy to prove that

$$
W(a, p)= \begin{cases}1 & \text { if } p \text { satisfies }(*) \\ 0 & \text { if not. }\end{cases}
$$

Thus

$$
\# F_{a}(x)=\sum_{3 \leqslant p \leqslant x} W(a, p)=\sum_{3 \leqslant p \leqslant x} \frac{1}{p}+\sum_{3 \leqslant p \leqslant x} \frac{1}{p} \sum_{i=1}^{p-1} \chi_{p}^{i(p-1)}(a) .
$$

We abbreviate the second term to $E_{a}(x)$ and put

$$
\begin{aligned}
& M=M(x, \delta)=\left\{a ; 2 \leqslant a \leqslant x^{4},\left|E_{a}(x)\right|>(\log \log x)^{\delta}\right\}, \\
& \eta_{a}(x)=\left\{\begin{array}{l}
0 \quad \text { if } E_{a}(x)=0, \\
\exp \left(-i \arg \left(E_{a}(x)\right)\right) \quad \text { if not. }
\end{array}\right.
\end{aligned}
$$

Then we have

$$
\begin{aligned}
(\# M)(\log \log x)^{i} & \leqslant \sum_{a \in M} \eta_{a}(x) E_{a}(x) \\
& \leqslant \sum_{3 \leqslant p \leqslant x} \sum_{i=1}^{p-1} \frac{1}{p}\left|\sum_{a \in M} \eta_{a}(x) \chi_{p}^{i(p-1)}(a)\right|,
\end{aligned}
$$

and Schwarz's inequality gives that

$$
(\sharp M)(\log \log x)^{\delta} \leqslant S^{1 / 2} T^{1 / 2},
$$

where

$$
\begin{aligned}
& S=\sum_{3 \leqslant p \leqslant x} \frac{p-1}{p^{2}} \\
& T=\sum_{3 \leqslant p \leqslant x} \sum_{i=1}^{p-1}\left|\sum_{a \in M} \eta_{a}(x) \chi_{p}^{i(p-1)}(a)\right|^{2} \cdot
\end{aligned}
$$

Since
(**) $\quad \sum_{p \leqslant x} \frac{1}{p}=\log \log x+C+\frac{1}{2} \theta\left((\log x)^{-2}\right), \quad$ if $x \geqslant 286$,
([4]), it is proved that $S<\log \log x$. And we can prove by the aid of "large sieve inequality" that $T \leqslant 2 x^{4}(\# M)$. Therefore

$$
\# M<2 x^{4}(\log \log x)^{1-2 \delta} .
$$

Thus we have proved that the formula

$$
\# F_{a}(x)=\sum_{3 \leqslant p \leqslant x} \frac{1}{p}+\theta\left((\log \log x)^{\delta}\right)
$$

holds for all a such that $2 \leqslant a \leqslant x^{4}$ with at most $\# M$ exceptions of a. We can accomplish our proof here by ($* *$) again.
Q.E.D.

Theorem 2 can be proved similarly.
3. A conjecture. The statement of our result and its proof are based on an adoptation of the method of Warlimont ([3]) on Artin's conjecture. Putting

$$
N_{a}(x)=\left\{p: \text { prime } ; p \leqslant x,\left[(\boldsymbol{Z} / p \boldsymbol{Z})^{*}:\langle a \bmod p\rangle\right]=1\right\},
$$

Artin's well-known conjecture says:
$\left({ }_{*}^{*}\right) \quad \# N_{a}(x) \sim C_{a} \pi(x) \quad$ as $x \rightarrow \infty$, where C_{a} is a constant depending on a, and this was proved by Hooley ([5]) under the assumption of the generalized Riemann hypothesis. Warlimont ([3]) proved on the other hand (without any assumption about Riemann hypothesis) an average type result saying :

$$
(* *) \quad \# N_{a}(x)=C \pi(x)+O\left(x(\log x)^{-2}\right)
$$

with an absolute constant C, for "almost all" $a \leqslant x^{2}$.
Obviously, we can write
$\boldsymbol{F}_{a}(x)=\left\{p:\right.$ prime $\left.; 3 \leqslant p \leqslant x,\left[\left(\boldsymbol{Z} / p^{2} \boldsymbol{Z}\right)^{*}:\left\langle a \bmod p^{2}\right\rangle\right] \equiv 0(\bmod p)\right\}$, and our result is an analogue to $\binom{* *}{* *}$. It seems difficult to obtain an analogue to $\left({ }_{*}^{*}\right)$, even if we assumed the generalized Riemann hypothesis. But it is tempting to enounce the following asymptotic formula as a conjecture:

$$
\# F_{a}(x) \sim D_{a} \cdot \log \log x,
$$

where D_{a} is a constant depending on a. (We have $F_{2}(31059000)$ $=\{1093,3511\}, \# F_{2}(31059000)=2$ and $\log \log (31059000) \doteqdot 2.85$. This is just one example, but could one surmise $\# F_{2}(x) \sim \log \log x$ with $D_{2}=1$? Concerning some numerical examples for $a \geqslant 3$, see [6].)

References

[1] A. Wieferich: Zum letzten Fermatschen Theorem. J. reine angew. Math., 136, 293-302 (1909).
[2] D. H. Lehmer and E. Lehmer: On the first case of Fermat's last theorem. Bull. Amer. Math. Soc., 47, 139-142 (1941).
[3] R. Warlimont: On Artin's conjecture. J. London Math. Soc., (2), 5, 91-94 (1972).
[4] J. B. Rosser and L. Schoenfeld: Approximate formulas for some functions of prime numbers. Illinois J. Math., 6, 64-94 (1962).
[5] C. Hooley: On Artin's conjecture. J. reine angew. Math., 225, 209-220 (1967).
[6] H. Riese: Note on the congruence $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$. Math. Comp., 18, 149-150 (1964).

