95. Flat Coördinate System for the Deformation of Type E_{6}

By Tamaki Yano
Department of Mathematics, Saitama University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1981)

Introduction. Let $f_{E_{6}}(x)=x^{4}+y^{3}+z^{2}$ be the defining equation of the simple singularity of type E_{6}. Let $F(x, t)$ be a versal deformation of $f_{E_{6}}(x)$ with the parameter space $S=\left\{\left(t_{2}, t_{5}, t_{6}, t_{8}, t_{9}, t_{12}\right) ; t_{i} \in \boldsymbol{C}\right\}$.

$$
F(x, t)=f_{E_{6}}(x)+t_{2} x^{2} y+t_{5} x y+t_{6} x^{2}+t_{8} y+t_{9} x+t_{12}
$$

The purpose of this article is to determine the flat coördinate system in the space S. We refer the reader to [1]-[5] for basic notion and notation. We note also that in [6] the same result as (1.2) is obtained with different method.

1. Construction of flat coördinate system. First note that

$$
\left(\text { Hess }(F)-4 t_{2} \partial F / \partial y\right) / 6=12 x^{2} y+2 t_{6} y+\left(-4 t_{2} t_{8}+t_{5}^{2}\right) .
$$

(1.1) We determine residue pairs for $e_{i}=\left[\partial F / \partial t_{i} \cdot d x \wedge d y \wedge d z\right]$ $\in \varphi_{*} \Omega_{X / S}^{3}$ (see [3], [5]). Set $12\left\langle e_{i}, e_{j}\right\rangle=e(i, j)$. The result is as follows.

$$
\begin{aligned}
& e(2,12)=e(5,9)=e(6,8)=1, \quad e(2,9)=e(5,8)=e(5,6)=0, \\
& e(6,6)=-t_{2} / 2, \quad e(2,8)=e(5,5)=t_{2}^{2} / 6, \\
& e(2,6)=-t_{6} / 2-t_{2}^{3} / 12, \quad \mathrm{e}(2,5)=t_{2} t_{5} / 4, \\
& e(2,2)=t_{2} t_{8} / 6-t_{2}^{2} t_{6} / 6+t_{5}^{2} / 12-t_{2}^{5} / 72 .
\end{aligned}
$$

(1.2) By the method in [5], $m_{i, j}(t)=\left\langle d t_{i}, d t_{j}\right\rangle$ are determined.

$$
m_{2, j}=j t_{j}, \quad j=2,5,6,8,9,12 .
$$

$$
m_{5,5}=8 t_{8}-4 t_{2} t_{6}-t_{2}^{4} / 6, \quad m_{5,6}=9 t_{9}-t_{2}^{2} t_{5} / 2,
$$

$$
m_{5,8}=-t_{2} t_{9} / 2-3 t_{5} t_{6} / 2-t_{2}^{3} t_{5} / 12, \quad m_{5,9}=12 t_{12}+t_{2}^{2} t_{8} / 3-3 t_{6}^{2}-t_{2}^{3} t_{6} / 6+t_{2} t_{5}^{2} / 6,
$$

$$
m_{5,12}=-3 t_{6} t_{9} / 2-t_{2}^{3} t_{9} / 12+t_{2} t_{5} t_{8} / 6
$$

$$
m_{6,6}=-10 t_{2} t_{8} / 3-2 t_{2}^{2} t_{6} / 3-5 t_{5}^{2} / 3, \quad m_{6,8}=12 t_{12}-4 t_{2}^{2} t_{8} / 3+7 t_{2} t_{2}^{2} / 12
$$

$$
m_{6,9}=-4 t_{2}^{2} t_{9} / 3-13 t_{5} t_{8} / 3+7 t_{2} t_{5} t_{6} / 6, \quad m_{6,12}=-2 t_{2}^{2} t_{12}+7 t_{2} t_{5} t_{9} / 12-8 t_{8}^{2} / 3
$$

$$
m_{8,8}=6 t_{2} t_{12}-7 t_{5} t_{9} / 2+4 t_{6} t_{8}-t_{2}^{2} t_{5}^{2} / 24,
$$

$$
m_{8,9}=-3 t_{6} t_{9} / 2-7 t_{2} t_{5} t_{8} / 6-t_{2}^{2} t_{5} t_{6} / 12+5 t_{5}^{3} / 12,
$$

$$
m_{8,12}=6 t_{6} t_{12}-9 t_{9}^{2} / 4-t_{2}^{2} t_{5} t_{9} / 24-4 t_{2} t_{8}^{2} / 3+5 t_{5}^{2} t_{8} / 12
$$

$$
m_{9,9}=-2 t_{2}^{2} t_{12}-5 t_{2} t_{5} t_{9} / 3-8 t_{8}^{2} / 3+8 t_{2} t_{6} t_{8} / 3-t_{2}^{2} t_{6}^{2} / 6+4 t_{5}^{2} t_{6} / 3
$$

$$
m_{9,12}=-3 t_{2} t_{5} t_{12}+5 t_{2} t_{9} t_{8} / 6-t_{2}^{2} t_{6} t_{9} / 12+5 t_{5}^{2} t_{9} / 12+t_{5} t_{6} t_{8} / 2
$$

$$
m_{12,12}=-2 t_{2} t_{8} t_{12}-t_{5}^{2} t_{12}-t_{2}^{2} t_{9}^{2} / 24+11 t_{5} t_{8} t_{9} / 6-4 t_{6} t_{8}^{2} / 3
$$

(1.3) A flat coordinate system $\left\{s_{i}\right\}$ and a usual coordinate $\left\{t_{i}\right\}$ are transformed each other by the following rule.

$$
\begin{aligned}
& s_{2}=t_{2}, \quad s_{5}=t_{5}, \quad s_{6}=t_{6}+t_{2}^{3} / 24, \quad s_{8}=t_{8}-t_{2} t_{6} / 4-5 t_{2}^{4} / 576, \quad s_{9}=t_{9}+t_{2}^{2} t_{5} / 12, \\
& s_{12}=t_{12}+t_{2}^{2} t_{8} / 24-t_{6}^{2} / 8-5 t_{2}^{3} t_{6} / 288+t_{2} t_{5}^{2} / 24-t_{2}^{6} / 2^{8} 3^{2}, \\
& t_{2}=s_{2}, \quad t_{5}=s_{5}, \quad t_{6}=s_{6}-s_{2}^{3} / 24, \quad t_{8}=s_{8}+s_{2} s_{6} / 4-s_{2}^{4} / 576, \quad t_{9}=s_{9}-s_{2}^{2} s_{5} / 12, \\
& t_{12}=s_{12}-s_{2}^{2} s_{8} / 24+s_{6}^{2} / 8-s_{2}^{3} s_{6} / 288-s_{2} s_{5}^{2} / 24 .
\end{aligned}
$$

(1.4) The relation between $\left\{s_{i}\right\}$ and a flat generator system $\left\{y_{i}\right\}$ determined in [2] is given by the following. Those constants are determined by comparing $\left\langle d s_{i}, d s_{j}\right\rangle$ and $\left\langle d y_{i}, d y_{j}\right\rangle$.

$$
\begin{aligned}
& y_{2}=-s_{2}, \quad y_{5}=\sqrt{6} s_{5} / 4, \quad y_{6}=-3 s_{6}, \quad y_{8}=-3 s_{8}, \quad y_{9}=3 \sqrt{6} s_{9} / 4 \\
& y_{12}=-9 s_{12} .
\end{aligned}
$$

(1.5) Owing to the above identification we can describe the parameter space of the deformation in terms of J.S. Frame's invariants A, B, C, H, J, K (see [2]).
$t_{2}=-A, \quad t_{5}=2 \sqrt{6} B / 3, \quad t_{6}=-C / 3+A^{3} / 12, \quad t_{8}=-H+A C / 6-A^{4} / 48$, $t_{9}=2 \sqrt{6} J / 9-\sqrt{6} A^{2} B / 18$, $t_{12}=-K+A^{2} H / 36+C^{2} / 36-7 A^{3} C / 432+2 A B^{2} / 9+A^{6} / 864$, $A=-s_{2}, \quad B=\sqrt{6} s_{5} / 4, \quad C=-3 s_{6}-s_{2}^{3} / 8, \quad H=-3 s_{8}+3 s_{2} s_{6} / 4+s_{2}^{4} / 192$, $J=3 \sqrt{6} s_{9} / 4, \quad K=-9 s_{12}-3 s_{2}^{2} s_{8}+9 s_{6}^{2} / 8+s_{2}^{3} s_{6} / 32-3 s_{2} s_{5}^{2} / 8$.
2. Free deformations derived from $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{t})$. We remark some deformations given by restricting the parameter space.
(2.1) Let $D\left(s_{2}, s_{5}, s_{6}, s_{8}, s_{9}, s_{12}\right)$ be the defining equation of the discriminant locus of the deformation of type E_{6} normalized as $D\left(0^{\prime}, s_{12}\right)$ $=s_{12}^{6}$. We note that $D(s)$ is an irreducible weighted homogeneous polynomial of weight 72.
(2.2) Set $s_{5}=s_{9}=0$ (or equivalently $t_{5}=t_{9}=0$). Then we get the deformation of type F_{4} associated with the folding $W\left(E_{6}\right) \bigwedge_{W}\left(F_{4}\right)$. $D\left(s_{2}, 0, s_{6}, s_{8}, 0, s_{12}\right)=g(s) g^{*}(s)^{2}$ where

$$
\begin{aligned}
& g(s)=\left(s_{12}-s_{2}^{2} s_{8} / 24+s_{6}^{2} / 8-s_{2}^{3} s_{6} / 2^{5} 3^{2}\right)^{2}+\frac{4}{27}\left(s_{8}+s_{2} s_{6} / 4-s_{2}^{4} / 2^{6} 3^{2}\right)^{3} \\
& g^{*}(s)=g\left(s_{2},-s_{6}, s_{8},-s_{12}\right)
\end{aligned}
$$

The defining equation of the discriminant of type F_{4} is given by $g(s) g^{*}(s)$. See [2], [4], [8], [9].
(2.3) Set $s_{5}=s_{6}=s_{8}=s_{9}=0$. Then the resulting deformation is of type $I_{2}(12)_{E}$ associated with the folding $W\left(E_{6}\right) \bigwedge W\left(I_{2}(12)\right)$.

$$
\begin{aligned}
& F_{I_{2(12)} E}(x, s)=x^{4}+y^{3}+s_{2} x^{2} y-s_{2}^{3} x^{2} / 24-s_{2}^{4} y / 576+s_{12} \\
& D\left(s_{2}, 0,0,0,0, s_{12}\right)=\left(s_{12}^{2}-s_{2}^{12} / 2^{16} 3^{9}\right)^{3} .
\end{aligned}
$$

(2.4) Three free deformations associated with unitary reflection groups are known.

$$
\begin{array}{ll}
\text { No. } 5 & x^{4}+y^{3}+t_{6} x^{2}+t_{12} \\
\text { No. } 8 & x^{4}+y^{3}+t_{8} y+t_{12}, \\
\text { No. } 25 & x^{4}+y^{3}+t_{6} x^{2}+t_{9} x+t_{12} .
\end{array}
$$

(2.5) There are two interesting deformations. One is related to the folding $W\left(F_{4}\right) \wedge W\left(I_{2}(8)\right)$. See Fig. below. The other is the deformation associated with the unitary reflection group No. 12, and the discriminant is a $(3,4)$-cusp.
$I_{2}(8) \quad x^{4}+y^{3}+s_{2} x^{2} y-s_{2}^{3} x^{2} / 24+\left(s_{8}-s_{2}^{4} / 576\right) y-s_{2}^{2} s_{8}$,
No. $12 x^{4}+y^{3}+s_{6} x^{2}+s_{8} y+s_{6}^{2} / 8$.

Fig. (2.6). Folding $W\left(F_{4}\right) \bigwedge W\left(I_{2}(8)\right)$.

References

[1] P. Slodowy: Simple singularities and simple algebraic groups. Lect. Notes in Math., vol. 815, Springer (1980).
[2] K. Saito, T. Yano, and J. Sekiguchi: On a certain generator system of the ring of invariants of a finite reflection group. Commun. Algebra, 8, 373408 (1980).
[3] K. Saito: On a linear structure of a quotient variety by a finite reflection group (to appear).
[4] T. Yano: Free deformations of isolated singularities. Sci. Rep. Saitama Univ., ser. A, 9(3), 61-70 (1980).
[5] -: Flat coördinate system for a free deformation of rational double point (to appear).
[6] A. B. Givental': Displacement of invariants of groups that are generated by reflections and are connected with simple singularities of functions. Funct. Anal. Appl., 14 (2), 4-14 (1980).
[7] T. Yano: Deformation of singularities associated with unitary reflection groups. Sci. Rep. Saitama Univ., ser. A, 10(1), 7-9 (1981).
[8] T. Yano and J. Sekiguchi: Microlocal structure of weighted homogeneous polynomials associated with finite Coxeter groups. II. Tokyo J. Math., 4(1), 1-34 (1981).
[9] J. Sekiguchi and T. Yano: The algebra of invariants of the Weyl group $W\left(F_{4}\right)$. Sci. Rep. Saitama Univ., ser. A, 9(2), 21-32 (1979).

