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O. Introduction. One of the basic problems in the theory of
dynamical systems is the characterization of stable systems. Let M
be a closed (i.e. compact connected without boundary) smooth manifold
with a smooth Riemannian metric and Diff (M) denote the space of C
diffeomorphisms on M with the uniform C topology for r_ 1. Let
f e Diff (M) for s_r. Then f is called C structurally stable if and
only if there is a neighborhood cU(f) of f in Diff (M) such that for
any g e cU(f) there exists a homeomorphism h" M--+M satisfying
gh=hf. Another important notion of stability is 9-stability. We.
denote by tg(f) the non-wandering set of f. f is called C [2-stable if
and only if there is a neighborhood cU(f) of f in Diff (M) such that for
any g e cU(f) there exists a homeomorphism h" 9(f)-+9(g) satisfy-
ing gh--hf on 9(f).

The essential condition to characterize these stabilities is "Axiom
A", namely f satisfies Axiom A if and only if

(a) tg(f) is a hyperbolic set,
(b) Per (f)= 9(f),

where Per (f) denotes the set of all periodic points of f. Recall that
a compact f-invariant subset AM is a hyperbolic set if and only if
there exist constants c0, 021 and a Tf-invariant continuous split-
ting TMI=E(R)E such that

TfIE --c, Tf-[E[ c],
or all p e A and non-negative integer n.

In [5], [11] and [4], the ollowing are conjectured.
Structural stability conjecture, f is C structurally stable if and

only if f satisfies Axiom A and Strong transversality condition.
/2.stability conjecture, f is C [2-stable if and only if f satisfies

Axiom A and No-cycle property.
For the definitions o Strong transversality condition and No-cycle

property, we refer to [5] and [11].
The pupose o this paper is to give an affirmative answer to these

conjectures or f of class C in case o dim M 2 and r--1.
The sufficiency of Axiom A and Strong transversality condition

(resp. No-cycle property) or structural (resp. 2-) stability has been
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known for arbitrary dimension [8], [10], [11]. Concerning the neces-
sity, it is known that if fA-stability implies. Axiom A, then both the
conjectures are established [4], [9]. In this paper, we investigate a
certain class of C diffeomorphisms which contains all C 9-stable dif-
feomorphisms, namely we define;
F(M)= int {g e Diff (M)" all periodic points of g are hyperbolic},

where int means "interior" with respect to C topology of Diff (M).
Our result is the following;
Theorem. Let dim M=2 and f e F(M). If f is of class C, then

9(f) is a hyperbolic set.
By the theorem of Kupka-Smale [9], it can be seen that if f is C

9-stable, then f e F(M). Furthermore, it is known that Axiom A(b)
holds for feF(M) (Lemma 3.1 in [2]). Thus, as corollaries of our

Theorem, we get;
Structural stability theorem.*) Let dim M=2 and f e Diff (M).

f is C structurally stable if and only if f satisfies Axiom A and Strong
transversality condition.

2.stability theorem.*) Let dim M 2 and f e Diff (M). f is C
9-stable if and only if f satisfies Axiom A and No-cycle property.

In this paper, we investigate only C stability because the "C
Closing lemma" has not been established for r_2. For the proof of
Axiom A(b) for f e F(M), we need the "C Closing lemma" [7], and this
is again our main tool for the proof of our Theorem.

1. Expansive intervals. From now on, we assume that M is a

fixed closed 2-dimensional smooth manifold with a smooth Riemannian
metric. For f F(M), p e Per (f) is hyperbolic, and we denote by

E(f) (resp. Es(f)) the unstable (resp. stable) subspace of TM. For
i--O, 1, 2, we put

A(f)-- closure {p e Per (f)" dim E(f)-- i}.
Note that Ao(f) and A.(f) are the sets o all sources and sinks of f re-
spectively. The ollowing proposition proved by Mafi [1] will play a

essential role in studying the precise properties o f e F(M).
Proposition 1.1. For f F(M), there exist cO and 021

satisfying
( ) there exists a CX-neighborhood cU of f such $hat

for all g e U and p e Per (g), where u(p) denotes the period of p.
(ii) there exists a Tf-invariant continuous splitting

-E(E such that

*) Ater I had finished this work, I was inormed that in [Chin. Ann. o2
Math., 1, 9-29 (1980)] S. D. Liao also asserted that he proved the stability con-

jectures or C diffeomorphisms on 2-manifolds and 2or C flows with isolated
singularities on 3-manifolds. But his method is considerably different ro.m ours.
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Tf E Tf E c2

for all n e Z/ and p e Al(f). Moreover if p e A(f) Per (f), then E
=E(f) and E=E(f), where E (i= 1, 2) denotes the fiber of E over
p and Z+ denotes the set of non-negative integers.

In what follows, we fix a C diffeomorphism f in F(M) and let c,
be the constants and TM]A(f)=EE the splitting both given in Pro-
position 1.1. We shall concentrate our attention only on E and inves-
tigate how the norm of TfE on a positive orbit of some point p e A(f)
varies. Put A=A(f) for simplicity.

Definition 1.2. Let p e A and N e Z+. A Z+-interval I= [u, v] is
called a (p, N)-expansive interval if and only if I satisfies

(i) length (I)=v-uN
(ii) Tf-]E()I1(-/)-,

where Z+-interval means an interval in Z +.

Such intervals always exist, namely;
Lemma 1.. For any p A and N e Z there exists a (p, N)-ex-

pansive interval.
We are interested in where such intervals exist in Z+ and an an-

swer is given by the next lemma which is the essence o the proof o
our Theorem.

Lemma 1.4. There exists No e Z+ such that for p A, m e Z+ and
integer NNo with

log Tf E ](Y/2)(log ]),
there exists a (p, N)-expansive interval in [0, m].

2. Proof of the theorem. From Lemma 3.1 in [2], we have (f)
=Ao(f)A(f)A(f). In [6], Pliss proved that Ao(f) and A(f) are
finite sets and consequently they are hyperbolic sets. Therefore we
have only to show that A A(f) is a hyperbolic set, namely;

( 1 ) there exist d0 and 0ZI such that
i) Tf-nEd

(ii) Tf]E]gz
or all n e Z+ and p e A.

We shall only prove (i). The same argument as in (i) with f- on
E gives (ii). Suppose (i)does not hold, then by an argument in [1],
we have that

( 2 ) there exists a p. A such that Tf E 1 or all n e Z
We fix a positive integer NN0. From Lemma 1.3, there exists

a (p., N)-expansive interval. Let I=[a, b] be the minimum element o
the set o all (p., N)-expansive intervals, where the order or intervals
is given lexicographically, that is or I1 [m, n] and I= [m, n], II
iff mm or, m m and nn. From the definition o expansive
intervals, we have
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ITflE I--IITf-IE=(.> I.IITf=iE.
From this and (2), we get

log Tf]E. (N/2)(log ).
Then by Lemma 1.4, it ollows that there exists a (p.,N)-expansive
interval in [0, a]. This contradicts the act that I=[a, b] is the mini-
mum among all (p., N)-expansive intervals. This completes the proof.. Main lemma. Lemma 1.3 is proved by using the technique
o the "C Closing lemm’ [7] and Proposition 1.1 (i) with rather rough
estimates. While the basic idea o the proo of Lemma 1.4 is the same
as that of Lemma 1.3, we need more delicate estimates. By precise
computations with certain C invariant coordinates, we can see that
or all K0 and 03 there exists an n0 eZ+ such that or p e , m Z+
and integer Nn0 with

( ) [ITXIEI[I
(ii) mK.N,

there exists a (p, N)-expansive interval in [0, m]. Thus, if there exist
constants K> 0 and 0>3 such that the condition

lo Zf= E (N/2)(lo )
implies mK.N or all N + Z+, then Lemma 1.4 is established. This
is guaranteed by the ollowing

Lemma .1. There exists a consan$ KO such ha if for l)O
and m + Z+, log ][Tf: ]E holds a some p /, then mK. +.

This lemma is proved by applying the ollowing Main lemma in=
ductively.

Main lemma. There exis N* Z+ and GO wih he following
propery" Le p . If for integers NN* and mO

log Tf: [EIl g(N/+/2)(log )
holds, $hen $here exis$ integers Ogmm, 0,[GN], and, dis/oin$
Z+-in$ervals (I:[u, v]}: in [0, m-m:] wih he properties;

( ) IZflE=,>llg for all Ogngm--m
(ii) : (v--uJ[GN].N

In the proo o this Main lemma, we use the technique of the "C
Closing lemma" or closing up and cutting of the suborbits o the
positive orbit o given p e .

The details will be published elsewhere.
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