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Characteristic Boundary Value Problems for
Hyperbolic Equations
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Department of Mathematics, Sophia University

(Communicated by K.Ssaku Y0SlDA, M. J. A., Oct. 12, 1981)

1. Problems and results. We study a priori estimates of the
solution u of boundary value problems in the hal space"

P(D, D)u(x, z)--f(x, z) for x> 0, z R,
(1.1)

[B(D, D)u[=0= g(z) for z e R", ]=0, 1, ..,/+ 1.
Let (x, z)-- (x, y, t) denote the variables in RXR-XR and (#,)
=(#, r], r) denote the covariables corresponding to (Dx, D, Dt)--(O/iOx,
O/iOy, O/iOt). We assume

(P1) P(D)-P(D, D, D,) is a homogeneous differential operator
o order m with constant coefficients and strictly hyperbolic with re-
spect to Dt, and

(P2) the boundary {x=0} is characteristic to P, i.e.
(1.2) P(1, 0, 0)--0,
where p0(#, r], r) is the principal symbol of P($, V, r).

There exists rom (P1) a positive constant r0 such that
(1.3) P(,,r)4:0 for (, , v) e RX {Imr --r0}.
Moreover, thanks to (P1) and (P2), we have an expression
(1.4) P(Dx, D,Dt)=P_(D)D2-+P_(D)D’2-2+ +Po(D),
where
(1.5) P_(], )=0 for (r], r) e R-’ {Im r< --r0}.

From (1.3) and (1.5), we have always m-1 non real roots of the
characteristic equation P(, )= 0 for parameters e R- {Im r< --r0}.
We denote them by (), ..., ;/(), (), .-., 2_(), where _+ mean
the sign of imaginary parts. Z/ +Z-=m-l, and p are independent
on the parameter .

We introduce boundary operators
(1.6) B(D D)==0 B (Dz)D
of total order b (m__< b). We assume

(B1) the number of boundary conditions is / i.e. ]=0, 1,...,

/+--1 in (1.6), and
(B2) O<mgm-1 i.e.m.-max m<m--1.

We define a polynomial of with paramter by
X+ ((1.7) P (, )=z_= -- ())
P;(),+ /... /P?()$+P;().

Dividing B($, ) by P/(, ) as polynomials of $, we have the quotient
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S(, 5) and the remainder term B.($, )
(1.8) B(, ) S(, 0P ($, )+B.($, 0,

where B(, ) ,+P,=0 B,(), S(, 0 "+[S,()
form and S(#, )=0 for m<z+.

The Lopatinski-Shapiro matrix is defined by B’()=(B.(); ], k=0,
1, .., p+--1}. Its determinant R(0=det B’(0 is called the Lopatinski-
Shapiro determinant. Let A()={A,()} be the inverse matrix of
B’(O.

The Fourier-Laplace transform is defined by

(, , a-ir)=e-’u(, , a) for real a and >0.
The norms of the weighted Sobolev spaces H,t;rk.x,z are

and those of H;(R) are

We introduce an index depending on the coefficients in (1.4). Di-
viding P() by P_() as polynomiMs in , we have the remainder
P(). Let be maximal number of {]’) such that deg P_()<] for
]=1, 2, ..., ]’ (l]’m). Let v=l/1, if llm--1 nd v=O, if l=m.

Main results. Assume (P1), (P2), (B1), (B2) and

there exist 00, r,>O and C>0 such that
-bi+O(L) la () _ll for ll =(,

[ ilmrl
Then, the unique solution u of (1.1) satisfies one of the following ine-
qualities"

if/+ =m--l,
(1.9)

Remark.
tion (L) gives
(1.11)

(See [1], [5].)

In the case o2 non characteristic boundary, the condi-

u + Er:01 (ru)_

O
Comparing (1.10) with (1.11), we see losses of tangential
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regularity (c. [3, p. 622, Th. 3]). Estimates without loss or sym-
metric hyperbolic systems o first order are studied by A. Majda and
S. Osher [3] or the uniform Lopatinski-Shapiro condition (Kreiss con-
dition) and by T. Ohkubo [4] or maximal non positive conditions.

Examples o P(D)o ( ) (trivial one).
P(D)=aD,+... +an_D,,_,+D, where a, e R.

Then, + =/- =0.
(ii) P(D)=D+2(DtD+DDx+DxD). Then, Z+--I, Z-=0.

1. $+()=(--r2--2r)/2(+r).
(iii) P(D)=D(D--D--D). Then, Z+=Z-=I, ,=0, $({)

+J-- and [()=O(l).
(iv) P(D)-Ot(O-O--O)+ (2/3)DD. Then, Z Z- 1, v= 1,

({)={2/3+*/9+r(r"--)}/r, l+()l=O(IlVllm rl) and
=o(ll).

(v) P(D)=D,(D--D--D)+(1/3)D. Then, Z+=Z-=I, v-l/2,

2. Sketch of the proofs. Since P_,() 0 for in R-X {Im <--r0}, the defining equation of characteristic roots ;() is

(2 1) -,+ P-() P0() =0P: -2+... + P-(
Main difficulties arise from the fact that the Characteristic roots may
be singular, when tends to real zeros of P_(). The number of
singular roots is equal to introduced in 1 and depends in general on. We have, however, the following estimates.

Lemma 1. (i) There exist >0 and C>0 such that

(2.2) ()]G C ]1+ for eR-’X{Imr<--}
lira r]

(]=1, 2,..., m-l).
(ii) If lii im-1,

(2.3) $,,().. "ij()] < Cr]j+min{jv’l} for in (i).
Jim Tlrain{jr’l}

(iii) If mz+,

(2.4) IS,()I G CI{ -"+-+(;-"+-)
for in (i)

(h=0, 1, ..., m-z+).
Proof. (i) We have only to transform (2.1) by u=IIm vll]--in order to obtain an algebraic equation of u with bounded coefficients.
(ii) If ],G1, (2.3) follows immediately from (2.2). Let

We define index sets d; {I= (i, ., i;) e N 1Gi<" <i; Gm-- 1}
equipped with the lexicographic order. Abbreviating (-1)$,()
$,({) to ({), we introduce a polynomial of one variable x"
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R(x; )= 1-I 5,, (x-&())
m-1 /’m- l’I

x( )+r(l)_()x - +... + r0().

Since r(])_() is homogeneous symmetric polynomial o (), ...,
o order 1], it is written by the undamental symmetric polynomials
A, -, A_ o ($, ., _). More precisely, there exist quasi-homo-
geneous polynomials G,(A, ., A_)= cA. .,_- such-that

r()_()=G,(A(), ..., A_()),
+...+_l nd +2+ +(m-1)_=l].

Therefore, ]r()_()]C]](]]/]Im r). On the other hand, all the

roots o2 an algebraic equation x’+ax-+. +a=0 have a major-
ant max{[pa],[pa/, ..., ]pap/}. Hence, () has a majorant

(iii) (2.4) is shown by the mathematical induction. Q.E.D.
Main results depend on the following two propositions.
Proposition 2. Uder the assumptions (P1)and (P2), there exist

r>0 and C>0 such that

(2.5) .u, <C(,Pu ; (u>_l_;) =.:;r= +j for all r>r

Proposition 3. When z+m-2, we have

for e R-’X {Im r< --y}, where P-(, )-P(, ;)/P+($, ) and C-()
denotes a closed curve in $he lower half plane {Im <0} surrounding
(;), ..., ;-().

To prove Proposition 2, we use a partially detailed version o
Lemma 8.2.1 in [2] to exclude the term (r_,u} from the right hand
side of (2.5).

The guidelines for the proo of t’he main estimates are the same
as they were in [5], [1], though calculations are more complicated.

Remark. In the main estimates, the loss o tangential regularity
due to Lemma 1 is inevitable. But, it seems that the loss due to Pro-
position 3 should be improved ([6]).

The author wishes to express his gratitude to Profs. K. Kubota
and S. Wakabayashi or their advices on the estimate o the charac-
teristic roots in the early stage of this study.
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