Let \mathfrak{U} be the subgroup of $\mathfrak{R}(f)$ which corresponds to K. Then the elliptic unit η of K is defined by the following:

 $\eta = \prod_{t \in \mathfrak{U}} \sqrt{\operatorname{Im}(\gamma_{t}) \operatorname{Im}(\gamma_{t})/\operatorname{Im}(\gamma_{t}) \operatorname{Im}(\gamma_{t})} \eta(\gamma_{t}) \eta(\gamma_{t}) \eta(\gamma_{t}) \eta(\gamma_{t})|^{2}}.$ Here $\eta(z)$ is the Dedekind eta function, and γ_{t} is a complex number with positive imaginary part such that $Z\gamma_{t} + Z$ belongs to the class $\mathfrak{t} \in \mathfrak{R}(f)$. The class $\mathfrak{x} \in \mathfrak{R}(f)$ is chosen so that tll generates the cyclic quotient group $\mathfrak{R}(f)/\mathfrak{U}$. The definition of η is independent of the choice of γ_{t} and \mathfrak{x} . Therefore, if $\mathfrak{R}(f)$ and \mathfrak{U} are explicitly given, we can calculate an approximate value of η using Lemma 3 of [2].

It is possible to obtain $\Re(f)$ and \mathfrak{U} explicitly, although it seems to be very complicated in the actual calculation.

§6. Appendix. (i) The following propositions help to determine ε_2 and ε_3 .

Proposition 2. (i) Assume h_2 or h_3 is odd. Then $\varepsilon_3 \neq \eta_3$ if $\sqrt{\eta}$ does not belong to K. (ii) Assume h_2 or h_3 is prime to 3. Then $\varepsilon_2 \neq \eta_2$ if $\sqrt[3]{\eta}$ does not belong to K.

Proposition 3. Let f and d be as in §5, and let d_2 be the discriminant of K_2 . Assume $\sqrt[3]{\eta_2}$ belongs to K. Then $d=3d_2$ or $3d_2=d$; and f is a power of 3.

(ii) The galois closure L of K/Q contains a totally imaginary sextic subfield K' not conjugate to K. Further algorithm to compute the class number and fundamental units of K' exists. It uses the results in [1].

Corrections to References [2] and [3]. In [2], we add the assumption that " $D \neq -23$ " throughout the note. See also [4] in detail. In Proposition 6 of [3], for ' $\sqrt{\eta_e}$ ' read " $\sqrt{\eta_2}$ ". In the definition of H_+ in [3], line 6 of § 1, for 'positive units' read "positive relative units".

References

- [1] K. Nakamula: A construction of the groups of units of some number fields from certain subgroups (preprint).
- [2] ——: Class number calculation and elliptic unit. I. Proc. Japan Acad., 57A, 56-59 (1981).
- [3] ——: Class number calculation and elliptic unit. II. ibid., 57A, 117–120 (1981).
- [4] ——: Class number calculation of a cubic field from the elliptic unit (to appear in J. reine angew. Math.).
- [5] R. Schertz: Über die Klassenzahl gewisser nicht galoisscher Körper 6-ten Grades. Abh. Math. Sem. Hamburg., 42, 217-224 (1974).