Let \mathfrak{U} be the subgroup of $\Re(f)$ which corresponds to K. Then the elliptic unit η of K is defined by the following:
$\eta=\prod_{t \in \mathfrak{u}} \sqrt{ } \operatorname{Im}\left(\gamma_{\mathrm{tt}}\right) \operatorname{Im}\left(\gamma_{\mathrm{r}^{3 t}}\right) / \operatorname{Im}\left(\gamma_{t}\right) \operatorname{Im}\left(\gamma_{\mathrm{r}^{2 t}}\right)\left|\eta\left(\gamma_{\mathrm{rt}}\right) \eta\left(\gamma_{\mathrm{r}^{3 t}}\right) / \eta\left(\gamma_{\mathrm{t}}\right) \eta\left(\gamma_{\mathrm{req}^{2} t}\right)\right|^{2}$.
Here $\eta(z)$ is the Dedekind eta function, and γ_{t} is a complex number with positive imaginary part such that $Z_{\gamma_{t}}+Z$ belongs to the class $\mathfrak{f} \in \mathfrak{R}(f)$. The class $\mathfrak{r} \in \mathfrak{R}(f)$ is chosen so that $\mathfrak{r l l}$ generates the cyclic quotient group $\mathfrak{R}(f) / \mathfrak{U}$. The definition of η is independent of the choice of $\gamma_{\text {t }}$ and \mathfrak{r}. Therefore, if $\mathfrak{R}(f)$ and \mathfrak{U} are explicitly given, we can calculate an approximate value of η using Lemma 3 of [2].

It is possible to obtain $\mathfrak{R}(f)$ and \mathfrak{U} explicitly, although it seems to be very complicated in the actual calculation.
§6. Appendix. (i) The following propositions help to deter$\operatorname{mine} \varepsilon_{2}$ and ε_{3}.

Proposition 2. (i) Assume h_{2} or h_{3} is odd. Then $\varepsilon_{3} \neq \eta_{3}$ if $\sqrt{\eta}$ does not belong to K. (ii) Assume h_{2} or h_{3} is prime to 3 . Then $\varepsilon_{2} \neq \eta_{2}$ if $\sqrt[3]{\eta}$ does not belong to K.

Proposition 3. Let f and d be as in §5, and let d_{2} be the discriminant of K_{2}. Assume $\sqrt[3]{\eta_{2}}$ belongs to K. Then $d=3 d_{2}$ or $3 d_{2}=d$; and f is a power of 3 .
(ii) The galois closure L of K / Q contains a totally imaginary sextic subfield K^{\prime} not conjugate to K. Further algorithm to compute the class number and fundamental units of K^{\prime} exists. It uses the results in [1].

Corrections to References [2] and [3]. In [2], we add the assumption that " $D \neq-23$ " throughout the note. See also [4] in detail. In Proposition 6 of [3], for ' $\sqrt{\eta_{e}}$ read " $\sqrt{\eta_{2}}$ ". In the definition of H_{+}in [3], line 6 of $\S 1$, for 'positive units' read "positive relative units".

References

[1] K. Nakamula: A construction of the groups of units of some number fields from certain subgroups (preprint).
[2] -: Class number calculation and elliptic unit. I. Proc. Japan Acad., $57 \mathrm{~A}, 56-59$ (1981).
[3] -: Class number calculation and elliptic unit. II. ibid., $57 \mathrm{~A}, 117-120$ (1981).
[4] -: Class number calculation of a cubic field from the elliptic unit (to appear in J. reine angew. Math.).
[5] R. Schertz: Über die Klassenzahl gewisser nicht galoisscher Körper 6-ten Grades. Abh. Math. Sem. Hamburg., 42, 217-224 (1974).

