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O. Introduction. Let S be a non-singular compact complex sur-
face imbedded in a complex manifold o dimension 3. As a differen-
tiable maniold, the structure o the tubular neighbourhood o S is
determined by its normal bundle. But, in general, the complex analytic
structure o the tubular neighbourhood o S cannot be determined by
the normal bundle.

In this note we shall state theorems on the complex analytic struc-
ture o the tubular neighbourhood o a Hop surface imbedded in a
complex manifold o dimension 3. In this case pseudoconvexity o the
domain o holomorphy and the Silov boundary o the domain in C
play essential roles. Such circumstance cannot occur in case o the
tubular neighbourhood o a compact complex curve imbedded in a com-
plex surface.

1. Statement of results. Definition 1.1o A non-singular compact
complex surface is called a Hop surface, i its universal covering sur-
face is biholomorphic to C--O (0 is the origin o2 C). If moreover
the undamental group o a Hop surface is an infinite cyclic group,
we call the surface a primary Hopf surace.

The ollowing acts are well-known ([3]).
(a) Every primary Hop2 surface has the following normal form"

S.,.=C2-O/(g}, g(zl, z2)=(olzl+ 2z, o2z),
where (g} denotes the group o automorphisms o C--O generated by
g, (zx, z) denote the standard coordinates o C and a e C* (i= 1, 2),
2 e C, m e Z satisfying 0laxlglall, (a-a)=0. If 2, 2#0, then

S... and S.. are biholomorphic to each other.
(b) For every Hop surface S, we have

Hi(S, () "-- Hi(S, C) -" C,
HI(S, (*)’H(S, C*)C*.

The second isomorphism implies that every complex line bundle over
S is flat. In particular every line bundle overS has the ollowing
orm:

(1.1) p:L(c)SI, L(c)=C(C--O)/(h}, where h denotes the
group o automorphisms o C(C-O) generated by h(s,z,z)=(cs,
az+2z, a.z), c e C* ((s, z, z) denote the standard coordinates of C)
and the projection p is defined by p([s, z, z])=([z, z]) ([ denotes the
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class in the quotient space).
Definition 1.2. Let L-L(c) be a complex line bundle over a

primary Hop surface S--S... L is said to be o infinite type i there
exists no triple of integers (p, q, r) such that c and either p, q>__0,
r0 or p, q>__l, r>__l. Furthermore if there exists no pair of integers
(p q,r) such that c=q,p> 1, q>0, r0 or p>0, q> 1, r0
or p>=l, q>=l, r)0, then L is said to be of strongly infinite type. We
denote by ILl the number]el.

Our theorems are stated as follows.
Theorem 1. Let S be a primary Hopf surface imbedded in a

complex manifold M of dimension 3 and let N be the normal bundle of
S. If N is of infinite type and IN]I, then there exists a multiplicative
holomorphic function u defined on some neighbourhood of S with
divisor S.

Theorem 2. Let S be a primary Hopf surface imbedded in a
complex manifold M of dimension 3. Suppose that the following con-
ditions are satisfied.

(1) The normal bundle N of S is of strongly infinite type and [N]
=1.

(2) [S] is a fiat line bundle on some neighbourhood of S in M.
Then there exists a tubular neighbourhood of S in M which is biholo-
morphic to a tubular neighbourhood of the O-section of N.

Theorem 3. Let S be a primary Hopf surface imbedded in a
complex manifold M of dimension 3. Suppose that the following con-
dition is satisfied.

(.) The normal bundle N of S is of strongly infinite type and

Then there exists a tubular neighbourhood of S on M which is biholo-
morphic to a tubular neighbourhood of the O-section of N.

Clearly Theorem 3 follows from Theorems 1 nd 2.

2. Sketch of proofs. Because the proofs of Theorems 1 and 2
are similar we only sketch the proof of Theorem 1. Let S, N and M
be the same as in Theorem 1. We divide the proof of Theorem 1 into
three steps.

Step 1. First we construct special Stein coverings of S, U={U}__
and q]*= {U*}= satisfying the following conditions.

(2.1) (1) Every U (or U*) is biholomorphic to a Reinhaldt domain
in C. U and U contain, respectively, the Silov boundaries of U*, U*,
U* nd of U*, U*, U*. (2) Each U* contains U s a relatively com-
pact subset. (3) U U U=, U U U=, U* U* U* , U*
U* U*=. (4) Let U (or U.) be a complex manifold obtained

by gluing the disjoint union of U, U, U (or U*, U, U*) naturally on
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U, U and U U (or U* U, U U*) for (i, ], k)=(1, 2, 3), (4, 5, 6).
Then U. and U, (or U*,., Ugh) are Stein manifolds. (5) Let W, be
(U U) (U, U) for 1i]6. Theneveryholomorphicfunction
defined on w, extends to a holomorphic function defined on a domain
W.*., (c U* U) which contains U, U as a relatively compact subset
(1__<i]=<6), except for (i, ])=(1, 2), (2, 3), (4, 5), (5, 6). (For (i, ])
--(1 2) (2, 3), (4, 5), (5, 6) W.*. is not determined naturally.) (6) There
exist holomorphic vector fields Z, Z defined on S such that zero loci
of det (Z, Z) e H(S, 0A) do not intersect the Silov boundary of U
for every i.

To construct such coverings, we use logarithmic convexity of the
domain of convergence of a Laurent power series ([2]). Next we con-
struct a Stein covering c,=V.

__
of S in M and coordinates (z, w)"

V*-C for each i satisfying the following conditions;
(2.2) (1) V* is a Stein neighbourhood of U*. (2) (z, w) are

defined on the closure of V*. (3) z" V*-+C is an extension of the co-
ordinate z U* of U* and satisfies z(V*)=z(U*). (4) (z, w)lV* V
-(z, w)lV* V for (i, ])=(1, 2), (2, 3), (4, 5), (5, 6). (5) w V*--C is
the defining equation of U* in V*, i.e., U*={p e V*]w(p)=O}. (6)
w/w is holomorphic on V* V and t-w/wlU* U] is a locally
constant function on U* U.

To construct such c* ={V*} and (z, w) (1<=i_<_6), we use a result
of Y. T. Siu ([5]).

Step 2. To prove Theorem 1, we must construct a system of
holomorphic functions {u}__ defined respectively on neighbourhoods

V’ (= V*) of U* satisfying the conditions (i). Each u is of the form
u(p)=w(p)/(terms of order >=2) (ii) u=tu on V V.. We deter-
mine each u as an implicit function defined by the equation

(2.3) w=f(z, u)=u+7=2fl(z)u, where f(z, u) is a power
series in u, whose coefficients f,(z) are holomorphic functions of the
variable z. To construct f as a formal power series we use entirely
the same method as in [6]. The ,-th obstruction --h,+, to construct
the formal power series is an element to Z’(U*, ((N-)) and f,+, is
determined by the equation

(2.4) fl.+(z)-- tsfl+ l(Zj) hl+,(z) on U* f U.
The following lemma completes the construction of the formal

power series.

Lemma. dimH(S, ((L-))=0 for e Z if L is a complex line
bundle of infinite type over S.

Step 3. To prove that eachf has a positive radius of convergence,

we estimatef by f...f_. Our estimate proceeds as follows.
(1) Estimate of --hl on W.
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(2) Estimate o f, on U.
(3) Estimate of on U*.
(1) is the estimate of the same type as in [6]. But we use a special

norm on Z(cU*, ((N-9). (2) is obtained rom (1) by using a similar
method to in [1] and (2.2) (5). We note that {-- h}=0 or (i, ])=(1, 2),
(2, 3), (4, 5), (5, 6)by the construction o coordinates. (3) is obtained
rom the equation (2.4) and arguments on the Silov boundary o U*.

Using these estimates we cn prove that each f has positive
radius o2 convergence.
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