7. Scattering Techniques in Transmutation and some Connection Formulas for Special Functions

By Robert CARROLL*) and John E. GILBERT**)

(Communicated by Kôsaku YOSIDA, M. J. A., Jan. 12, 1981)

1. Introduction. Fadeev in [11] develops a technique for displaying certain operators of interest in scattering theory in terms of transmutations; this allows one to give an essentially unified derivation of the Gelfand-Levitan and Marčenko equations (which is generalized in Carroll [6]). In particular the link between the Gelfand-Levitan and Marčenko equations is shown in [11] to be a certain transmutation operator \tilde{U} and in this article we determine the natural generalization $\tilde{\mathscr{B}}$ (or $\tilde{\mathscr{B}}$) of \tilde{U} in the transmutation framework of Carroll [2]–[5]; then, in a context based on harmonic analysis in rank one noncompact symmetric spaces, we show how the use of such operators $\hat{\mathscr{B}}$ provides a transmutation meaning and abstract derivation for various types of formulas connecting special functions with integrals of Riemann-Liouville and Weyl type (cf. Flensted-Jensen [12], Koornwinder [13], Askey-Fitch [1], Chao [8]). One particular feature of \tilde{U} which relates Riemann-Liouville and Weyl type integrals in the relation $\tilde{U}=(U^{-1})^*$ for a basic transmutation operator U and this provides complementary types of triangular kernels (cf. here Erdélyi [10] for a related use of adjointness). In our more general framework adjointness plays a different role but we obtain similar triangularity results for the analogous \mathcal{B} and $\tilde{\mathcal{B}}$ by other methods (Theorem 2.1). The details will appear in [7].

2. Basic constructions. We will work with differential operators of the form P(D)u = (Au')'/A where A(x) will have properties modeled on P(D) being the radial Laplace-Beltrami operator on a noncompact Riemannian symmetric space of rank one (cf. [9], [12], [13] for details). Let $\varphi_{\lambda}^{P}(t)$ be a "spherical function" satisfying $P(D)\varphi_{\lambda}^{P}$ $= (-\lambda^{2} - \rho^{2})\varphi_{\lambda}^{P}, \ \varphi_{\lambda}^{P}(0) = 1$, and $D_{t}\varphi_{\lambda}^{P}(0) = 0$, where $\rho = \lim (1/2)A'/A$ at $t \to \infty$. Thus $\varphi_{\lambda}(t) = \varphi_{\lambda}^{P}(t) \sim H(t, \mu)$ for $\mu = -\lambda^{2}$ and $\hat{P} = P + \rho^{2}$ (notation of [2]-[5]). We set $\Omega(x, \mu) = \Omega_{\lambda}(x) = \Omega_{\lambda}^{P}(x) = \Delta_{P}(x)\varphi_{\lambda}^{P}(x)$ where $\Delta_{P}(x)$ = A(x) for P(D). Then $\hat{P}^{*}(D)\Omega_{\lambda}^{P} = \mu\Omega_{\lambda}^{P}$ where $P^{*}(D)\psi = [A(\psi/A)']'$ denotes the formal adjoint of P(D). A typical example of $\Delta_{P}(x)$ here is $\Delta_{P}(x) = \Delta_{\alpha\beta}(x) = (e^{x} - e^{-x})^{2\alpha+1}(e^{x} + e^{-x})^{2\beta+1}$ with $\rho = \alpha + \beta + 1$ in which

^{*)} University of Illinois at Champaign-Urbana.

^{**)} University of Texas at Austin.

case the spherical functions $\varphi_{\lambda}^{P}(x)$ are Jacobi functions of the first kind $\varphi_{\lambda}^{a\beta}(x) = F(2^{-1}(\rho+i\lambda), 2^{-1}(\rho-i\lambda), \alpha+1, -sh^{2}x)$ (cf. [13]). A second solution of $\hat{P}(D)\psi = \mu\psi$ in this situation is given by the function $\Phi_{\lambda}^{a\beta}(x) = \Phi_{\lambda}^{P}(x) = (e^{x} - e^{-x})^{i\lambda-\rho} F(2^{-1}(\beta - \alpha + 1 - i\lambda), 2^{-1}(\beta + \alpha + 1 - i\lambda), 1 - i\lambda, -sh^{-2}x)$ which is called a Jacobi function of the second kind and which we shall refer to as a Jost solution (cf. [7], [11]). Indeed one has $\Phi_{\lambda}^{P}(x) \sim \exp(i\lambda - \rho)x$ as $x \to \infty$ and $\varphi_{\lambda}(x) = c(\lambda)\Phi_{\lambda}(x) + c(-\lambda)\Phi_{-\lambda}(x)$ where $c(\lambda) = c_{P}(\lambda)$ is the Harish-Chandra function (which corresponds essentially here to the Jost function of physics). A related example in [12] involves $\Delta_{P}(x) = \Delta^{p,q}(x) = (e^{x} - e^{-x})^{p}(e^{2x} - e^{-2x})^{q}$. Analyticity and growth properties of φ_{λ} and Φ_{λ} can be found in [12], [13].

We will assume our operators P(D) are of a type where $A(x) \sim \Delta_{a\beta}(x)$ or $\Delta^{p,q}(x)$ and suitable analyticity and growth properties are valid (cf. also [9]). Now recall the notation of [2], [4], [5] which we modify slightly in writing

$$\hat{f}(\lambda) = \mathfrak{P}f(\lambda) = \int_0^\infty f(x)\varphi_{\lambda}^P(x)\Delta_P(x)dx$$

and

$$f(x) = \mathbf{P}\hat{f}(x) = \int_{0}^{\infty} \hat{f}(\lambda)\varphi_{\lambda}^{P}(x)d\nu_{P}(\lambda)$$

where $d\nu(\lambda) = d\nu_P(\lambda) = d\lambda/2\pi |c_P(\lambda)|^2$ (we will write $\Re f(\lambda) = \langle f(x), \Omega_{\lambda}^P(x) \rangle$ and $P\hat{f}(x) = \langle \hat{f}(\lambda), \varphi_{\lambda}^P(x) \rangle_{\nu}$). Similar transformations are defined relative to another operator Q(D) as above in the form

$$\tilde{g}(\lambda) = \mathfrak{Q}g(\lambda) = \int_0^\infty g(x)\varphi_\lambda^Q(x)\Delta_Q(x)dx \quad \text{with} \quad \mathbf{Q} = \mathfrak{Q}^{-1};$$

we will write $d\omega_q(\lambda) = d\omega(\lambda) = d\lambda/2\pi |c_q(\lambda)|^2$. Let us also define

$$\hat{h}(\lambda) = \mathcal{P}h(\lambda) = \int_0^\infty h(x)\varphi_{\lambda}^P(x)dx, \ P\hat{h}(x) = \mathcal{P}^{-1}\hat{h}(x) = \int_0^\infty \hat{h}(\lambda)\varphi_{\lambda}^P(x)\Delta_P(x)d\nu,$$

with corresponding maps Q and $Q = Q^{-1}$, while we set $\Pi F(x) = \langle F(\lambda), \varphi_{\lambda}^{P}(x) \rangle_{\omega}$ and $\Xi G(x) = \langle G(\lambda), \varphi_{\lambda}^{Q}(x) \rangle_{\omega}$. Note that

$$\delta_P(x) = \delta(x) / \Delta_P(x) = \int_0^\infty \varphi_\lambda^P(x) d\nu$$

with $\hat{\delta}_{P}(\lambda) = 1$. A framework of spaces and maps is developed in [2], [4], [5] and we refer to [7] for details. Transmutation operators B and $\mathcal{B}=B^{-1}$ satisfying $B\hat{P}=\hat{Q}B$ and $\mathcal{B}\hat{Q}=\hat{P}\mathcal{B}$ are constructed in the form $B=\mathcal{B}\mathfrak{P}$ and $\mathcal{B}=\Pi\mathfrak{Q}$ where $B^*=P\mathcal{Q}$, $\mathcal{B}^*=Q\mathcal{P}$, and $\mathcal{E}^{-1}=\mathfrak{P}\Pi\mathfrak{Q}$; one says $B:\hat{P}\rightarrow\hat{Q}$ and $\mathcal{B}:\hat{Q}\rightarrow\hat{P}$ where we have set $\hat{P}u=Pu+\rho_{P}^{2}u$ and $\hat{Q}u=Qu+\rho_{Q}^{2}u$. The operators B and \mathcal{B} have kernel expressions $Bf(y) = \langle \beta(y, x), f(x) \rangle$ and $\mathcal{B}g(x) = \langle \gamma(x, y), g(y) \rangle$ where $\beta(y, x) = \langle \mathcal{Q}_{P}^{P}(x), \varphi_{Q}^{Q}(y) \rangle_{\nu}$.

Let now $W(\lambda) = |c_q(\lambda)/c_P(\lambda)|^2$ so that $d\nu_P = W(\lambda)d\omega_Q$. One knows that $\varphi_{\lambda}^P = \mathcal{B}\varphi_{\lambda}^Q$ and one defines now $\tilde{\mathcal{B}} = \mathbb{P}\Omega$ so that $W(\lambda)\varphi_{\lambda}^P = \tilde{\mathcal{B}}\varphi_{\lambda}^Q$ (which follows the spirit of [11]). Then setting $W^x = \mathbb{Q}W(\lambda)\Omega$, we have

Theorem 2.1. $\tilde{\mathcal{B}} = P\Omega$ is a transmutation $\tilde{\mathcal{B}}\hat{Q} = \hat{P}\tilde{\mathcal{B}}, W(\lambda)\varphi_{\lambda}^{P} = \tilde{\mathcal{B}}\varphi_{\lambda}^{Q}, \quad \tilde{\mathcal{B}} = \mathcal{B}W^{x}, \quad \tilde{\mathcal{B}}g(x) = \langle \tilde{\gamma}(x, y), g(y) \rangle \text{ where } \tilde{\gamma}(x, y) = \langle \varphi_{\lambda}^{P}(x), \Omega_{\lambda}^{Q}(y) \rangle_{\nu} = \mathcal{A}_{Q}(y)\mathcal{A}_{P}^{-1}(x)\beta(y, x), \quad \gamma(x, \cdot) \in \mathcal{E}'_{y} \text{ with } \gamma(x, y) = 0 \text{ for } y > x, \text{ and } \tilde{\gamma}(\cdot, y)\mathcal{A}_{P} (\cdot)\mathcal{A}_{Q}^{-1}(y) = \beta(y, \cdot) \in \mathcal{E}'_{x} \text{ with } \tilde{\gamma}(x, y) = 0 \text{ for } x > y.$

The triangularity proof involves writing $\varphi_{\lambda}^{P}(y) = \mathcal{B}\varphi_{\lambda}^{Q}(y) = \Pi \mathfrak{Q}\varphi_{\lambda}^{Q}(y)$ = $Q_{\gamma}(y, \cdot)(\lambda) = \mathfrak{Q}[\gamma(y, \cdot)/\mathcal{A}_{Q}(\cdot)](\lambda)$. Similarly from $W(\lambda)\varphi_{\lambda}^{P}(x) = \tilde{\mathcal{B}}\varphi_{\lambda}^{Q}(x)$ with $\tilde{\mathcal{B}} = \mathsf{P}\mathfrak{Q}$ we get $\tilde{\gamma}(x, y)/\mathcal{A}_{Q}(y) = \mathsf{Q}[W(\lambda)\varphi_{\lambda}^{P}(x)](y) = \mathsf{P}[\varphi_{\lambda}^{Q}(y)](x)$ so that $\varphi_{\lambda}^{Q}(y) = \mathfrak{P}[\tilde{\gamma}(\cdot, y)/\mathcal{A}_{Q}(y)](\lambda)$. Then the Paley-Wiener theorem can be used.

In the case where $P \sim \Delta_{\alpha\beta}$ and $Q \sim \Delta_{\alpha+\mu,\beta+\mu}$ some formulas in [13] based on known relations between hypergeometric functions can be recast to produce

(2.1) Theorem 2.2. For
$$P \sim \Delta_{\alpha\beta}$$
 and $Q \sim \Delta_{\alpha+\mu,\beta+\mu}$ one has $\widetilde{\mathcal{B}}\left(\frac{\Phi_{\lambda}^{Q}(y)}{c_{Q}(-\lambda)}\right) = \frac{\Phi_{\lambda}^{P}(x)}{c_{P}(-\lambda)}.$

3. Connection formulas. For various reasons (mainly to avoid distribution kernels) we take now $P = D^2$ and $Q \sim \Delta_q$ as before (instead of $Q = D^2$ as in [5] or [11]). Thus $\varphi_{\lambda}^{P}(t) = \cos \lambda t$, $\Phi_{\lambda}^{P}(t) = e^{i\lambda t}$, $\Delta_{P} = 1$, and $c_{P}(\lambda) = 1/2$. We will write kernels for this situation as $\beta_{q}(y, x)$, $\gamma_{q}(x, y)$, etc. First using complex variable arguments modeled on [11] (with no recourse to properties of hypergeometric functions) one proves a direct generalization of a formula of [11] in the form

Theorem 3.1. For $Q \sim \Delta_q$ we have

(3.1)
$$\frac{e^{i\lambda x}}{1/2} = \tilde{\mathcal{B}}\left(\frac{\Phi_{\lambda}^{q}(y)}{c_{q}(-\lambda)}\right)(x).$$

This is a special case of Theorem 2.2 but the demonstration is "abstract". A (different) abstract proof of Theorem 2.2 can also be produced. Further in this context it is natural to utilize the operator $\hat{\mathcal{B}} = \mathbf{Q} \mathfrak{P} = \tilde{\mathcal{B}}^{-1}$ so that $\hat{\mathcal{B}} \mathcal{B} W^x = I$, $\mathcal{B}^* = \mathcal{A}_q(y)\hat{\mathcal{B}}$, and $\hat{\mathcal{B}} f(y) = \langle \hat{\beta}_q(y, x), f(x) \rangle$ with $\hat{\beta}_q(y, x) = \langle \varphi_q^Q(y), \cos \lambda x \rangle_w = 0$ for y > x.

Note that $\hat{\mathscr{B}} = \mathbb{Q}\mathfrak{P}$ is defined quite generally; note also that since we have reversed the position of D^2 from [11] it is $\hat{\mathscr{B}}$ which corresponds to \tilde{U} here. Thus (3.1) holds and $\tilde{\gamma}_q(x, y) = \mathcal{J}_q(y)\beta_q(y, x)$. From [4], [5], [14] we now know $\mathscr{P}f = Q\vec{f}$ for $\vec{f} = \mathscr{B}^*f$ and $\mathscr{P}\check{g} = Qg$ for $\check{g} = B^*g$. In the present context we have $B^*[\mathcal{J}_q f] = \hat{\mathscr{B}}f$ and $\mathscr{P}B^*[\mathcal{J}_q f](x) = Q[\mathcal{J}_q f](x)$ $= \mathfrak{Q}f(x)$. Hence $(Q \sim \mathcal{J}_{a\beta})$ and, referring to [13] for F_q , we obtain

Theorem 3.2. $F_{\varrho}[f](x) = B^*[\varDelta_{\varrho}f](x)$ and $\mathscr{P}F_{\varrho}[f] = \mathfrak{Q}f$.

Another set of formulas in [13] use Weyl type integrals W_{μ}^{z} . We can represent $W_{\beta+1/2}^{z}$ as a transmutation $W_{\beta+1/2}^{z} = \Gamma(\alpha+1)\tilde{\mathscr{B}}/2^{2\beta+3/2}\Gamma(\alpha+\beta+1/2)$ where, in an obvious notation, $\tilde{\mathscr{B}}: (\alpha, \beta) \rightarrow (\alpha-\beta-1/2, -1/2)$. Similarly $W_{\alpha-\beta}^{1} = \sqrt{\pi}\tilde{\mathscr{B}}'/2^{3(\alpha-\beta)}\Gamma(\alpha-\beta+1/2)$ where $\tilde{\mathscr{B}}': (\alpha-\beta-1/2, -1/2)$ $\rightarrow (-1/2, -1/2)$. Then for $\tilde{\mathscr{B}}_{q}: (\alpha, \beta) \rightarrow (-1/2, -1/2)$ as in Theorem 3.2 (i.e. $\tilde{\mathcal{B}}_{qf} = B^*[\mathcal{A}_{qf}]$, $(-1/2, -1/2) \sim D^2$, $(\alpha, \beta) \sim Q$) the formula $F_{\alpha\beta} = 2^{3\alpha+3/2} W^1_{\alpha-\beta} \circ W^2_{\beta+1/2}$ of [13] is equivalent to

Theorem 3.3. The operator $F_o[f] = \tilde{\mathcal{B}}_o f$ can be factored as

(3.2)
$$F_{q} = \frac{\sqrt{\pi} \Gamma(\alpha + 1)}{\Gamma(\alpha - \beta + 1/2)\Gamma(\alpha + \beta + 3/2)} \tilde{\mathcal{B}}' \circ \tilde{\mathcal{B}}$$

for $\tilde{\mathscr{B}}$ and $\tilde{\mathscr{B}}'$ as indicated.

References

- R. Askey and J. Fitch: Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl., 26, 411-437 (1969).
- [2] R. Carroll: Transmutation and operator differential equations. Notas de Matematica, vol. 67, North-Holland, Amsterdam (1979).
- [3] ——: Transmutation and separation of variables. Applicable Anal., 8, 253– 263 (1979).
- [4] ——: Some remarks on transmutation. ibid., 9, 291–294 (1979).
- [5] ——: Transmutation, generalized translation, and transform theory, I and II (to appear).
- [6] ——: Remarks on the Gelfand-Levitan and Marčenko equations (to appear in Applicable Anal.).
- [7] R. Carroll and J. Gilbert: Some remarks on transmutation, scattering theory, and special functions (to appear).
- [8] M. Chao: Harmonic analysis of a second order singular differential operator associated with noncompact semisimple rank one Lie groups. Thesis, Washington University (1976).
- [9] H. Chebli: Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0, ∞). J. Math. Pures Appl., 58, 1-19 (1979).
- [10] A. Erdélyi: Fractional integrals of generalized functions. Lect. Notes in Math., vol. 457, Springer, pp. 151-170 (1975).
- [11] L. Fadeev: The inverse problem of quantum scattering theory. Uspekhi Mat. Nauk., 14, 57-119 (1959).
- [12] M. Flensted-Jensen: Paley-Wiener type theorems for a differential operator connected with symmetric spaces. Ark. Mat., 10, 143-162 (1972).
- [13] T. Koornwinder: A new proof of a Paley-Wiener type theorem for the Jacobi transform. ibid., 13, 145-159 (1975).
- [14] V. Marčenko: Sturm-Liouville operators and their applications. Izd. Nauk. Dumka, Kiev (1977).