7. Scattering Techniques in Transmutation and some Connection Formulas for Special Functions

By Robert Carroll*) and John E. Gilbert**)
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1981)

1. Introduction. Fadeev in [11] develops a technique for displaying certain operators of interest in scattering theory in terms of transmutations ; this allows one to give an essentially unified derivation of the Gelfand-Levitan and Marčenko equations (which is generalized in Carroll [6]). In particular the link between the Gelfand-Levitan and Marčenko equations is shown in [11] to be a certain transmutation operator \tilde{U} and in this article we determine the natural generalization $\widetilde{\mathscr{B}}$ (or $\widetilde{\mathscr{B}}$) of \tilde{U} in the transmutation framework of Carroll [2]-[5]; then, in a context based on harmonic analysis in rank one noncompact symmetric spaces, we show how the use of such operators $\widetilde{\mathscr{B}}$ provides a transmutation meaning and abstract derivation for various types of formulas connecting special functions with integrals of RiemannLiouville and Weyl type (cf. Flensted-Jensen [12], Koornwinder [13], Askey-Fitch [1], Chao [8]). One particular feature of \tilde{U} which relates Riemann-Liouville and Weyl type integrals in the relation $\tilde{U}=\left(U^{-1}\right)^{*}$ for a basic transmutation operator U and this provides complementary types of triangular kernels (cf. here Erdélyi [10] for a related use of adjointness). In our more general framework adjointness plays a different role but we obtain similar triangularity results for the analogous \mathscr{B} and $\tilde{\mathcal{B}}$ by other methods (Theorem 2.1). The details will appear in [7].
2. Basic constructions. We will work with differential operators of the form $P(D) u=\left(A u^{\prime}\right)^{\prime} / A$ where $A(x)$ will have properties modeled on $P(D)$ being the radial Laplace-Beltrami operator on a noncompact Riemannian symmetric space of rank one (cf. [9], [12], [13] for details). Let $\varphi_{\lambda}^{P}(t)$ be a "spherical function" satisfying $P(D) \varphi_{\lambda}^{P}$ $=\left(-\lambda^{2}-\rho^{2}\right) \varphi_{\lambda}^{P}, \varphi_{\lambda}^{P}(0)=1$, and $D_{t} \varphi_{\lambda}^{P}(0)=0$, where $\rho=\lim (1 / 2) A^{\prime} / A$ at $t \rightarrow \infty$. Thus $\varphi_{\lambda}(t)=\varphi_{\lambda}^{P}(t) \sim H(t, \mu)$ for $\mu=-\lambda^{2}$ and $\hat{P}=P+\rho^{2}$ (notation of [2]-[5]). We set $\Omega(x, \mu)=\Omega_{\lambda}(x)=\Omega_{\lambda}^{P}(x)=\Delta_{P}(x) \varphi_{\lambda}^{P}(x)$ where $\Delta_{P}(x)$ $=A(x)$ for $P(D)$. Then $\hat{P}^{*}(D) \Omega_{\lambda}^{P}=\mu \Omega_{\lambda}^{P}$ where $P^{*}(D) \psi=\left[A(\psi / A)^{\prime}\right]^{\prime}$ denotes the formal adjoint of $P(D)$. A typical example of $\Delta_{P}(x)$ here is $\Delta_{P}(x)=\Delta_{\alpha \beta}(x)=\left(e^{x}-e^{-x}\right)^{2 \alpha+1}\left(e^{x}+e^{-x}\right)^{2 \beta+1}$ with $\rho=\alpha+\beta+1$ in which

[^0]case the spherical functions $\varphi_{1}^{P}(x)$ are Jacobi functions of the first kind $\varphi_{\lambda}^{\alpha \beta}(x)=F\left(2^{-1}(\rho+i \lambda), 2^{-1}(\rho-i \lambda), \alpha+1,-s h^{2} x\right)$ (cf. [13]). A second solution of $\hat{P}(D) \psi=\mu \psi$ in this situation is given by the function $\Phi_{\lambda}^{\alpha \beta}(x)=\Phi_{\lambda}^{P}(x)=\left(e^{x}-e^{-x}\right)^{i \lambda-\rho} F\left(2^{-1}(\beta-\alpha+1-i \lambda), 2^{-1}(\beta+\alpha+1-i \lambda), 1-i \lambda\right.$, $-s h^{-2} x$) which is called a Jacobi function of the second kind and which we shall refer to as a Jost solution (cf. [7], [11]). Indeed one has $\Phi_{\lambda}^{P}(x) \sim \exp (i \lambda-\rho) x$ as $x \rightarrow \infty$ and $\varphi_{\lambda}(x)=c(\lambda) \Phi_{\lambda}(x)+c(-\lambda) \Phi_{-_{\lambda}}(x)$ where $c(\lambda)=c_{P}(\lambda)$ is the Harish-Chandra function (which corresponds essentially here to the Jost function of physics). A related example in [12] involves $\Delta_{P}(x)=\Delta^{p, q}(x)=\left(e^{x}-e^{-x}\right)^{p}\left(e^{2 x}-e^{-2 x}\right)^{q}$. Analyticity and growth properties of φ_{λ} and Φ_{λ} can be found in [12], [13].

We will assume our operators $P(D)$ are of a type where $A(x) \sim$ $\Delta_{\alpha \beta}(x)$ or $\Delta^{p, q}(x)$ and suitable analyticity and growth properties are valid (cf. also [9]). Now recall the notation of [2], [4], [5] which we modify slightly in writing

$$
\hat{f}(\lambda)=\Re f(\lambda)=\int_{0}^{\infty} f(x) \varphi_{\lambda}^{P}(x) \Delta_{P}(x) d x
$$

and

$$
f(x)=P \hat{f}(x)=\int_{0}^{\infty} \hat{f}(\lambda) \varphi_{\lambda}^{P}(x) d \nu_{P}(\lambda)
$$

where $d \nu(\lambda)=d \nu_{P}(\lambda)=d \lambda / 2 \pi\left|c_{P}(\lambda)\right|^{2}$ (we will write $\mathfrak{P} f(\lambda)=\left\langle f(x), \Omega_{\lambda}^{P}(x)\right\rangle$ and $\left.\operatorname{Pf} \hat{f}(x)=\left\langle\hat{f}(\lambda), \varphi_{\lambda}^{P}(x)\right\rangle_{\nu}\right)$. Similar transformations are defined relative to another operator $Q(D)$ as above in the form

$$
\tilde{g}(\lambda)=\mathfrak{Q} g(\lambda)=\int_{0}^{\infty} g(x) \varphi_{\lambda}^{Q}(x) \Delta_{Q}(x) d x \quad \text { with } \quad \mathrm{Q}=\mathfrak{Q}^{-1} ;
$$

we will write $d \omega_{Q}(\lambda)=d \omega(\lambda)=d \lambda / 2 \pi\left|c_{Q}(\lambda)\right|^{2}$. Let us also define

$$
\hat{h}(\lambda)=\mathscr{P} h(\lambda)=\int_{0}^{\infty} h(x) \varphi_{\lambda}^{P}(x) d x, P \hat{h}(x)=\mathcal{P}^{-1} \hat{h}(x)=\int_{0}^{\infty} \hat{h}(\lambda) \varphi_{\lambda}^{P}(x) \Delta_{P}(x) d \nu
$$

with corresponding maps Q and $\boldsymbol{Q}=Q^{-1}$, while we set $\Pi F(x)=\langle F(\lambda)$, $\left.\varphi_{\lambda}^{P}(x)\right\rangle_{\omega}$ and $\Xi G(x)=\left\langle G(\lambda), \varphi_{\lambda}^{Q}(x)\right\rangle_{\nu}$. Note that

$$
\delta_{P}(x)=\delta(x) / \Delta_{P}(x)=\int_{0}^{\infty} \varphi_{\lambda}^{P}(x) d \nu
$$

with $\hat{\delta}_{P}(\lambda)=1$. A framework of spaces and maps is developed in [2], [4], [5] and we refer to [7] for details. Transmutation operators B and $\mathscr{B}=B^{-1}$ satisfying $B \hat{P}=\hat{Q} B$ and $\mathscr{B} \hat{Q}=\hat{P} \mathscr{B}$ are constructed in the form $B=\Xi \mathfrak{P}$ and $\mathscr{B}=\Pi \cong$ where $B^{*}=\boldsymbol{P} Q, \mathcal{B}^{*}=\boldsymbol{Q} \mathscr{P}$, and $\Xi^{-1}=\Re \Pi \cong$; one says $B: \hat{P} \rightarrow \hat{Q}$ and $\mathscr{B}: \hat{Q} \rightarrow \hat{P}$ where we have set $\hat{P} u=P u+\rho_{P}^{2} u$ and $\hat{Q} u=Q u+\rho_{Q}^{2} u$. The operators B and \mathscr{B} have kernel expressions $B f(y)$ $=\langle\beta(y, x), f(x)\rangle$ and $\mathscr{B} g(x)=\langle\gamma(x, y), g(y)\rangle$ where $\beta(y, x)=\left\langle\Omega_{\lambda}^{P}(x)\right.$, $\left.\varphi_{\lambda}^{Q}(y)\right\rangle_{\nu}$ and $\gamma(x, y)=\left\langle\varphi_{\lambda}^{P}(x), \Omega_{\lambda}^{Q}(y)\right\rangle_{\omega}$.

Let now $W(\lambda)=\left|c_{Q}(\lambda) / c_{P}(\lambda)\right|^{2}$ so that $d \nu_{P}=W(\lambda) d \omega_{Q}$. One knows that $\varphi_{\lambda}^{P}=\mathscr{B} \varphi_{\lambda}^{Q}$ and one defines now $\widetilde{\mathcal{B}}=P \mathfrak{Q}$ so that $W(\lambda) \varphi_{\lambda}^{P}=\widetilde{\mathscr{B}} \varphi_{\lambda}^{Q}$ (which follows the spirit of [11]). Then setting $W^{x}=\mathbf{Q} W(\lambda) \cong$, we have

Theorem 2.1. $\widetilde{\mathscr{B}}=\mathbf{P} \mathfrak{Q}$ is a transmutation $\widetilde{\mathscr{B}} \hat{Q}=\hat{P} \widetilde{\mathscr{B}}, W(\lambda) \varphi_{\lambda}^{P}$ $=\widetilde{\mathscr{B}} \varphi_{\lambda}^{Q}, \widetilde{\mathscr{B}}=\mathscr{B} W^{x}, \widetilde{\mathcal{B}} g(x)=\langle\tilde{\gamma}(x, y), g(y)\rangle$ where $\tilde{\gamma}(x, y)=\left\langle\varphi_{\lambda}^{P}(x), \Omega_{\lambda}^{Q}(y)\right\rangle_{\nu}$ $=\Delta_{Q}(y) \Delta_{P}^{-1}(x) \beta(y, x), \gamma(x, \cdot) \in \mathcal{E}_{y}^{\prime}$ with $\gamma(x, y)=0$ for $y>x$, and $\tilde{\gamma}(\cdot, y) \Delta_{P}$ $(\cdot) \Delta_{Q}^{-1}(y)=\beta(y, \cdot) \in \mathcal{E}_{x}^{\prime}$ with $\tilde{\gamma}(x, y)=0$ for $x>y$.

The triangularity proof involves writing $\varphi_{2}^{P}(y)=\mathscr{B} \varphi_{2}^{Q}(y)=\Pi \Omega \varphi_{\lambda}^{Q}(y)$ $=Q \gamma(y, \cdot)(\lambda)=\mathcal{Q}\left[\gamma(y, \cdot) / \Delta_{Q}(\cdot)\right](\lambda)$. Similarly from $W(\lambda) \varphi_{\lambda}^{P}(x)=\widetilde{\mathscr{G}} \varphi_{\lambda}^{Q}(x)$ with $\widetilde{\mathscr{B}}=\mathrm{P} Q$ we get $\tilde{\gamma}(x, y) / \Delta_{Q}(y)=\mathrm{Q}\left[W(\lambda) \varphi_{\lambda}^{P}(x)\right](y)=\mathrm{P}\left[\varphi_{\lambda}^{Q}(y)\right](x)$ so that $\varphi_{\lambda}^{Q}(y)=\Re\left[\tilde{\gamma}(\cdot, y) / \Delta_{Q}(y)\right](\lambda)$. Then the Paley-Wiener theorem can be used.

In the case where $P \sim \Delta_{\alpha \beta}$ and $Q \sim \Delta_{\alpha+\mu, \beta+\mu}$ some formulas in [13] based on known relations between hypergeometric functions can be recast to produce

Theorem 2.2. For $P \sim \Delta_{\alpha \beta}$ and $Q \sim \Delta_{\alpha+\mu, \beta+\mu}$ one has

$$
\begin{equation*}
\widetilde{\mathscr{B}}\left(\frac{\Phi_{\lambda}^{Q}(y)}{c_{Q}(-\lambda)}\right)=\frac{\Phi_{\lambda}^{P}(x)}{c_{P}(-\lambda)} \tag{2.1}
\end{equation*}
$$

3. Connection formulas. For various reasons (mainly to avoid distribution kernels) we take now $P=D^{2}$ and $Q \sim \Delta_{Q}$ as before (instead of $Q=D^{2}$ as in [5] or [11]). Thus $\varphi_{\lambda}^{P}(t)=\operatorname{Cos} \lambda t, \Phi_{\lambda}^{P}(t)=e^{i \lambda t}, \Delta_{P}=1$, and $c_{P}(\lambda)=1 / 2$. We will write kernels for this situation as $\beta_{Q}(y, x), \gamma_{Q}(x, y)$, etc. First using complex variable arguments modeled on [11] (with no recourse to properties of hypergeometric functions) one proves a direct generalization of a formula of [11] in the form

Theorem 3.1. For $Q \sim \Delta_{Q}$ we have

$$
\begin{equation*}
\frac{e^{i \lambda x}}{1 / 2}=\widetilde{\mathscr{B}}\left(\frac{\Phi_{\lambda}^{Q}(y)}{c_{Q}(-\lambda)}\right)(x) . \tag{3.1}
\end{equation*}
$$

This is a special case of Theorem 2.2 but the demonstration is "abstract". A (different) abstract proof of Theorem 2.2 can also be produced. Further in this context it is natural to utilize the operator $\widehat{\mathcal{B}}=\mathrm{Q} \mathfrak{P}=\widetilde{\mathcal{B}}^{-1}$ so that $\widehat{\mathcal{B}} \mathscr{B} W^{x}=I, \mathcal{B}^{*}=\Delta_{Q}(y) \widehat{\mathcal{B}}$, and $\widehat{\mathcal{B}} f(y)=\left\langle\hat{\beta}_{Q}(y, x)\right.$, $f(x)\rangle$ with $\hat{\beta}_{Q}(y, x)=\left\langle\varphi_{\lambda}^{Q}(y), \operatorname{Cos} \lambda x\right\rangle_{\omega}=0$ for $y>x$.

Note that $\hat{\mathcal{B}}=Q \mathfrak{P}$ is defined quite generally; note also that since we have reversed the position of D^{2} from [11] it is $\widehat{\mathcal{B}}$ which corresponds to \tilde{U} here. Thus (3.1) holds and $\tilde{\gamma}_{Q}(x, y)=\Delta_{Q}(y) \beta_{Q}(y, x)$. From [4], [5], [14] we now know $\mathcal{P} f=Q \breve{f}$ for $\breve{f}=\mathcal{B}^{*} f$ and $\mathscr{P} \check{g}=Q g$ for $\check{g}=B^{*} g$. In the present context we have $B^{*}\left[\Delta_{Q} f\right]=\widehat{\mathcal{B}} f$ and $\mathscr{P} B^{*}\left[\Delta_{Q} f\right](x)=Q\left[\Delta_{Q} f\right](x)$ $=\mathfrak{Q} f(x)$. Hence $\left(Q \sim \Delta_{\alpha \beta}\right)$ and, referring to [13] for F_{Q}, we obtain

Theorem 3.2. $\quad F_{Q}[f](x)=B^{*}\left[\Delta_{Q} f\right](x)$ and $\mathscr{P} F_{Q}[f]=\mathfrak{Q} f$.
Another set of formulas in [13] use Weyl type integrals W_{μ}^{σ}. We can represent $W_{\beta+1 / 2}^{2}$ as a transmutation $W_{\beta+1 / 2}^{2}=\Gamma(\alpha+1) \widetilde{\mathcal{B}} / 2^{3 \beta+3 / 2} \Gamma(\alpha+\beta$ $+1 / 2)$ where, in an obvious notation, $\widetilde{\mathcal{B}}:(\alpha, \beta) \rightarrow(\alpha-\beta-1 / 2,-1 / 2)$. Similarly $W_{\alpha-\beta}^{1}=\sqrt{\pi} \widetilde{\mathcal{B}}^{\prime} / 2^{3(\alpha-\beta)} \Gamma(\alpha-\beta+1 / 2)$ where $\widetilde{\mathcal{B}}^{\prime}:(\alpha-\beta-1 / 2,-1 / 2)$ $\rightarrow(-1 / 2,-1 / 2)$. Then for $\widetilde{\mathcal{B}}_{Q}:(\alpha, \beta) \rightarrow(-1 / 2,-1 / 2)$ as in Theorem
3.2 (i.e. $\left.\widetilde{\mathscr{B}}_{Q} f=B^{*}\left[\Delta_{Q} f\right],(-1 / 2,-1 / 2) \sim D^{2},(\alpha, \beta) \sim Q\right)$ the formula $F_{\alpha \beta}$ $=2^{3 \alpha+3 / 2} W_{\alpha-\beta}^{1} \circ W_{\beta+1 / 2}^{2}$ of [13] is equivalent to

Theorem 3.3. The operator $F_{Q}[f]=\widetilde{\mathscr{G}}_{Q} f$ can be factored as

$$
\begin{equation*}
F_{Q}=\frac{\sqrt{\pi} \Gamma(\alpha+1)}{\Gamma(\alpha-\beta+1 / 2) \Gamma(\alpha+\beta+3 / 2)} \tilde{\mathcal{B}}^{\prime} \circ \tilde{\mathscr{B}} \tag{3.2}
\end{equation*}
$$

for $\widetilde{\mathscr{B}}$ and $\widetilde{\mathscr{B}}^{\prime}$ as indicated.

References

[1] R. Askey and J. Fitch: Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl., 26, 411-437 (1969).
[2] R. Carroll: Transmutation and operator differential equations. Notas de Matematica, vol. 67, North-Holland, Amsterdam (1979).
[3] --: Transmutation and separation of variables. Applicable Anal., 8, 253263 (1979).
[4] --: Some remarks on transmutation. ibid., 9, 291-294 (1979).
[5] -: Transmutation, generalized translation, and transform theory, I and II (to appear).
[6] -: Remarks on the Gelfand-Levitan and Marčenko equations (to appear in Applicable Anal.).
[7] R. Carroll and J. Gilbert: Some remarks on transmutation, scattering theory, and special functions (to appear).
[8] M. Chao: Harmonic analysis of a second order singular differential operator associated with noncompact semisimple rank one Lie groups. Thesis, Washington University (1976).
[9] H. Chebli: Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur ($0, \infty$). J. Math. Pures Appl., 58, 1-19 (1979).
[10] A. Erdélyi: Fractional integrals of generalized functions. Lect. Notes in Math., vol. 457, Springer, pp. 151-170 (1975).
[11] L. Fadeev: The inverse problem of quantum scattering theory. Uspekhi Mat. Nauk., 14, 57-119 (1959).
[12] M. Flensted-Jensen: Paley-Wiener type theorems for a differential operator connected with symmetric spaces. Ark. Mat., 10, 143-162 (1972).
[13] T. Koornwinder: A new proof of a Paley-Wiener type theorem for the Jacobi transform. ibid., 13, 145-159 (1975).
[14] V. Marčenko: Sturm-Liouville operators and their applications. Izd. Nauk. Dumka, Kiev (1977).

[^0]: *) University of Illinois at Champaign-Urbana.
 **) University of Texas at Austin.

