76. Some Explicit Formulae in the Theory of Numbers

A Remark on the Riemann Hypothesis

By Akio FuJiI
Department of Mathematics, Rikkyo University
(Communicated by Kunihiko Kodaira, m. J. A., June 11, 1981)

§ 1. Introduction. We put for $x \geqq 1$ and for $0<\alpha \leqq 1$, $H(x, \alpha)=\sum_{1 \leqq n \leqq x} \sum_{1 \leqq n \leqq \alpha n} \log (h, n)-\alpha \sum_{1 \leqq n \leqq x} \sum_{1 \leqq n \leqq n} \log (h, n)+\frac{1}{2} \sum_{n \leqq x} \log \mathrm{n}$, where (h, n) is the greatest common divisor of h and n. We put for irrational α

$$
F(x, \alpha)=H(x, \alpha)+x Z_{\alpha}(1)
$$

and for rational $\alpha=\alpha / q$ with $(\alpha, q)=1$,

$$
\begin{aligned}
F(x, \alpha)= & H(x, a / q)-(x / 2 q) \log (x / q)+x\left(\lambda_{1}(a / q)+\lambda_{2}(a / q)\right) \\
& -(x / q)\left(\lambda_{3}(a / q)+\lambda_{4}(a / q)\right),
\end{aligned}
$$

where we put

$$
\lambda_{j}(a / q)=\sum_{b=1}^{q}\left(\left\{\frac{a b}{q}\right\}-\frac{1}{2}\right) \nu_{j}(b) \quad \text { for } 1 \leqq j \leqq 4, \nu_{1}(b)=1 / b,
$$

$\nu_{2}(b)=1 /(b+q), \nu_{3}(b)=\log (1+b / q)$ and $\nu_{4}(b)=2+\gamma_{0}-\gamma_{b / q}$ with

$$
\gamma_{n}=-\int_{1}^{\infty} \frac{\{y\} d y}{(y+\eta)^{2}}
$$

$\{y\}$ is the fractional part of y and $Z_{\alpha}(1)$ is defined below. Under these notations we have shown in [2] the following two theorems which are stated in a slightly different way.

Theorem 1. The Riemann Hypothesis is equivalent to the statement that for any positive ε and for $X>X_{0}$,

$$
\int_{0}^{1}|F(X, \alpha)|^{2} d \alpha \ll X^{1+\varepsilon}
$$

Theorem 2. Let Q be an integer $\geqq 1$. Let $f_{1}, f_{2}, \cdots, f_{i}, \cdots, f_{A}$ be the Farey series of order Q, namely, $f_{i}=a_{i} / q_{i}$ with integral α_{i} and q_{i}, $\left(a_{i}, q_{i}\right)=1,0<a_{i} \leqq q_{i}, 0<q_{i} \leqq Q$ and $f_{1}<f_{2}<\cdots<f_{A}$. Then the Riemann Hypothesis is equivalent to the statement that for any positive ε and for $Q>Q_{0}$,

$$
\sum_{i=1}^{A}\left|F\left(Q, a_{i} / q_{i}\right)\right|^{2} \ll Q^{3+e}
$$

In fact, the gap between above Theorem 1 and our previous Theorem 1 in [2] can be filled by the proof of Lemma 3 below and the gap between above Theorem 2 and our previous Theorem 2 in [2] will be filled in § 2. The purpose of the present note is to give, by the classical methods, an explicit relation between $F(X, \alpha)$ for an individual
α and the totality of the non-trivial zeros of the Riemann zeta function $\zeta(s)$.

For this purpose we need some properties of the zeta function $Z_{\alpha}(s)$ defined by

$$
Z_{\alpha}(s)=\sum_{n=1}^{\infty} \frac{\{\alpha n\}-1 / 2}{n^{s}} .
$$

If α is rational and is $=a / q,(a, q)=1$, then

$$
Z_{\alpha}(s)=q^{-s} \sum_{b=1}^{q}\left(\left\{\frac{a b}{q}\right\}-\frac{1}{2}\right) \zeta\left(s, \frac{b}{q}\right),
$$

where $\zeta(s, w)$ for $0<w \leqq 1$ is the Hurwitz zeta function defined by $\zeta(s, w)=\sum_{n=0}^{\infty}(n+w)^{-s}$. Using the well known properties (cf. p. 37 of [9] and p. 114 and p. 115 of [8]) of $\zeta(s, w)$ we can show

Theorem 3. Let $Q>Q_{0}$. Then

$$
\begin{aligned}
& \int_{1}^{Q}\left(\int_{1}^{v} F\left(y, \frac{a}{q}\right) \frac{d y}{y}\right) \frac{d v}{v}=\sum_{\rho} Z_{a / q}(\rho) \frac{Q^{\rho}}{\rho^{3}}+A_{1} \log ^{2} Q \\
& \quad+A_{2} \log Q+A_{3}+O\left(Q^{-1+\delta}\right)
\end{aligned}
$$

where ρ runs over all non-trivial zeros of $\zeta(s), A_{1}, A_{2}$ and A_{3} are some constants independent of Q and δ is an arbitrary small positive number.

For irrational α, our knowledge of $Z_{\alpha}(s)$ seems to be scarce except Hecke's [4] for quadratic irrational α (cf. also Hardy and Littlewood [3]). Let D be a positive square free integer $\equiv 2$ or $3(\bmod 4)$ and let η be the fundamental unit of the quadratic number field $Q(\sqrt{D})$ or the square of it as in [4]. Then as a simple application of Hecke's work [4], we can show

Theorem 4. Let $X>X_{0}$. Then

$$
\begin{aligned}
& \int_{1}^{x}\left(\int_{1}^{v} F(y, 1 / \sqrt{D}) \frac{d y}{y}\right) \frac{d v}{v}=\sum_{\rho} Z_{1 / \sqrt{D}}(\rho) \frac{X^{\rho}}{\rho^{3}}+\sum_{n=-\infty}^{+\infty} C_{n} X^{\frac{2 \pi i n}{\log \eta}} \\
& \quad+A_{1} \log ^{3} X+A_{2} \log ^{2} X+A_{3} \log X+O\left(X^{-1+\delta}\right),
\end{aligned}
$$

where δ is an arbitrary small positive number, A_{1}, A_{2}, A_{3} and C_{n} are some constants independent of X and $C_{n} \ll n^{-2+\delta}$.

We shall prove Theorem 2 in § 2 and Theorem 4 in §3. Since the proof of Theorem 3 is similar to that of Theorem 4, we shall omit it. We always denote positive absolute constants by C and arbitrarily small positive numbers by ε and write $s=\sigma+i t$.
§2. Proof of Theorem 2. It is enough to prove the following two lemmas. Let $0<a \leqq q \leqq Q,(a, q)=1$ and $Q>Q_{0}$.

Lemma 1.

$$
\begin{gathered}
Q \sum_{n \leq Q} \frac{\{a n / q\}-1 / 2}{n}=-\frac{1}{2} \frac{Q}{q} \log (Q / q)+Q\left(\lambda_{1}\left(\frac{a}{q}\right)+\lambda_{2}\left(\frac{a}{q}\right)\right) \\
-\frac{Q}{q}\left(\lambda_{3}\left(\frac{a}{q}\right)-\sum_{b=1}^{q}\left(\left\{\frac{a b}{q}\right\}-\frac{1}{2}\right) \gamma_{b / q}\right)+S\left(\frac{a}{q}\right)-\tilde{S}\left(\frac{a}{q}\right),
\end{gathered}
$$

where we put

$$
S\left(\frac{a}{q}\right)=\frac{Q}{q} \sum_{b=1}^{q}\left(\left\{\frac{a b}{q}\right\}-\frac{1}{2}\right) I \quad \text { with } \quad I=\int_{Q / q}^{\infty} \frac{\{y-(b / q)\}-(1 / 2)}{y^{2}} d y
$$

and

$$
\tilde{S}\left(\frac{a}{q}\right)=\sum_{b=1}^{q}\left(\left\{\frac{a b}{q}\right\}-\frac{1}{2}\right)\left(\left\{\frac{Q-b}{q}\right\}-\frac{1}{2}\right)
$$

Proof. Since the left hand side is

$$
=Q\left(\lambda_{1}\left(\frac{a}{q}\right)+\lambda_{2}\left(\frac{a}{q}\right)\right)+\frac{Q}{q} \sum_{b=1}^{q}\left(\left\{\frac{a b}{q}\right\}-\frac{1}{2}\right)_{1<m \leqq(Q-b) / q}\left(m+\frac{b}{q}\right)^{-1}
$$

and
$\sum_{1<m \leqq(Q-b) / q}\left(m+\frac{b}{q}\right)^{-1}=\log \frac{Q}{q}-\log \left(1+\frac{b}{q}\right)+\gamma_{b / q}+I-\frac{q}{Q}\left(\left\{\frac{Q-b}{q}\right\}-\frac{1}{2}\right)$,
we get our Lemma 1.
Q.E.D.

Lemma 2. $\quad \sum_{q \leq Q} \sum_{a}^{\prime}|S(a / q)|^{2} \ll Q^{3+\varepsilon}$ and $\sum_{q \leq Q} \sum_{a}^{\prime}|\tilde{S}(a / q)|^{2} \ll Q^{3+\varepsilon}$, where the dash indicates that we sum over all a in $1 \leqq a \leqq q$ with (a, q) $=1$.

Proof. We denote the sum $\sum_{1 \leqq n \leqq q-1}$ by $\sum_{n}^{\prime \prime}$.

$$
\begin{aligned}
& S\left(\frac{a}{q}\right)= \frac{Q}{q} \sum_{b}^{\prime \prime}\left(\sum_{m}^{\prime \prime} \frac{\sin (2 \pi m a b / q)}{m \pi}+O\left(\left(q\left\|\frac{a b}{q}\right\|\right)^{-1}\right)\right) \\
& \times\left(\sum_{k}^{\prime \prime} \frac{\operatorname{Im}(e(-k b / q) I(k))}{k \pi}+O\left(\left(q(Q / q)^{2}\right)^{-1}\right)\right)+O(1) \\
& \ll \frac{Q}{q} \sum_{k}^{\prime \prime} \sum_{m}^{\prime \prime} \frac{|I(k)|}{m k}\left(\left|\sum_{b}^{\prime \prime} e\left(\frac{b}{q}(k+m a)\right)+\right| \sum_{b}^{\prime \prime} e\left(\frac{b}{q}(k-m a)\right)\right) \\
&+\frac{q \log q}{Q}+1 \\
& \ll q \sum_{\substack{k \\
q \mid k+m_{m a}^{m}}}^{\prime \prime}\left(k^{2} m\right)^{-1}+q \sum_{\substack{k \\
q \mid k-m a}}^{\prime \prime} \sum_{n}^{\prime \prime}\left(k^{2} m\right)^{-1} \\
&+\sum_{\substack{k \\
q \backslash k+m a}}^{\prime \prime} \sum_{m}^{\prime \prime}\left(k^{2} m\left\|\frac{k+m a}{q}\right\|\right)^{-1}+\sum_{\substack{k \\
k \\
q \backslash k-m a}}^{\prime \prime} \sum_{m}^{\prime \prime}\left(k^{2} m\left\|\frac{k-m a}{q}\right\|\right)^{-1} \\
&+\log q \\
&= S_{1}\left(\frac{a}{q}\right)+S_{2}\left(\frac{a}{q}\right)+S_{3}\left(\frac{a}{q}\right)+S_{4}\left(\frac{a}{q}\right)+\log q,
\end{aligned}
$$

say, where

$$
I(k)=\int_{Q / q}^{\infty} \frac{e(k y)}{y^{2}} d y \ll\left(k(Q / q)^{2}\right)^{-1}, \quad e(x)=\exp (2 \pi i x)
$$

$\|x\|=\operatorname{Min}(\{x\}, 1-\{x\})$ and we have used the expression

$$
\{y\}-\frac{1}{2}=\sum_{k=1}^{\infty} \frac{\sin (2 k \pi y)}{k \pi}
$$

if y is not an integer.

$$
\sum_{q \leq Q} \sum_{a}^{\prime}\left|S_{1}\left(\frac{a}{q}\right)\right|^{2} \ll \sum_{q \leq Q} q^{2} \log q \sum_{a}^{\prime} \sum_{\substack{k \\ q \mid k^{+}+m a}}^{\prime \prime} \sum_{m}^{\prime \prime}\left(k^{2} m\right)^{-1}
$$

$$
\begin{aligned}
& \ll \sum_{q \leq Q} q^{2} \log q \sum_{d \mid q} \sum_{\substack{m \\
(m, q)=d}}^{\prime \prime} \frac{1}{m} \sum_{k}^{\prime \prime} \frac{1}{k^{2}} \sum_{\substack{a \\
q \mid k+m a}}^{\prime} \cdot 1 \\
& \ll \sum_{q \leq Q} q^{2} \log q \sum_{a \mid q} \sum_{a \mid m}^{\prime \prime} \sum_{a \mid k}^{\prime \prime} d k^{-2} m^{-1} \ll Q^{3} \log ^{2} Q .
\end{aligned}
$$

Similarly, we get the same upper bound for the sum of $S_{2}(a / q)$'s.

$$
\begin{aligned}
\sum_{q \leq Q} \sum_{a}^{\prime}\left|S_{3}\left(\frac{a}{q}\right)\right|^{2} & \ll \sum_{q \leq Q} \log q \sum_{a}^{\prime} \sum_{\substack{k \\
k \\
k \\
\prime \prime}} \sum_{m}^{\prime \prime}\left(k^{2} m\left\|\frac{k+m a}{q}\right\|^{2}\right)^{-1} \\
& \ll \sum_{q \leq Q} \log q \sum_{c}^{\prime \prime k}\|c / q\|^{-2} \sum_{d \mid q} \sum_{\substack{m \\
(m, q)=d}}^{\prime \prime} m^{-1} \sum_{k}^{\prime \prime} k^{-2} \sum_{k+m a \equiv c(\bmod q)}^{\prime} \cdot 1 \\
& \ll \sum_{q \leqq Q} q^{2} \log ^{2} q\left(\sum_{d \mid q} 1\right) \ll Q^{3} \log ^{3} Q .
\end{aligned}
$$

Similarly, we get the same upper bound for the sum of $S_{4}(a / q)$'s. Thus we get $\sum_{q \leq Q} \sum_{a}^{\prime}|S(a / q)|^{2} \ll Q^{3} \log ^{3} Q$. In the same manner, we get $\sum_{q \leq Q} \sum_{a}^{\prime}|\tilde{S}(a / q)|^{2} \ll Q^{3} \log ^{5} Q$.
Q.E.D.
§ 3. Proof of Theorem 4. We suppose first that α is irrational and remark the following lemma and its corollary.

Lemma 3. For almost all irrational $\alpha, Z_{\alpha}(s)$ is regular in $\operatorname{Re} s>0$ and $Z_{\alpha}(s) \ll(\log T)^{2+\varepsilon}$ for $\sigma \geqq 1-C / \log T,|t| \leqq T$ and $T>T_{0}$.

Proof. We remark that $\sum_{n \leqq y}(\{\alpha n\}-1 / 2) \ll(\log y)^{2+s}$ for $y>y_{0}$ and for almost all irrational α (cf. p. 38 of Lang [7]). Now let α satisfy this inequality and N be an integer $\geqq 1$. Then for $\operatorname{Re} s>1$

$$
Z_{\alpha}(s)=\sum_{n<N} \frac{\{\alpha n\}-1 / 2}{n^{s}}+s \int_{N}^{\infty} \frac{\sum_{N \leqq n \leq y}(\{\alpha n\}-1 / 2)}{y^{s+1}} d y .
$$

Hence $Z_{\alpha}(s)$ is regular for $\operatorname{Re} s>0$ and the rest can be proved in the same way as p. 114 of [8].
Q.E.D.

Corollary. For almost all irrational α,

$$
F(X, \alpha)=O(X \exp (-C \sqrt{\log X}))
$$

Since $H(X, \alpha)=-\sum_{d m \leqq X} \Lambda(d)(\{\alpha m\}-1 / 2)$, we get the above corollary, as usual, by the contour integral of $\left(\zeta^{\prime} / \zeta\right)(s) Z_{\alpha}(s) X^{s} / s$ using Lemma 3 and p. 69 of [8], where $\Lambda(d)$ is the von Mangoldt function.

Now we shall prove our Theorem 4 and suppose that $\alpha=1 / \sqrt{D}$ as in § 1. We need the following lemma due to Hecke [4].

Lemma 4. i) $Z_{1 / \sqrt{D}}(s)$ is regular for $\operatorname{Re} s>0$ and in $\operatorname{Re} s \leqq 0$ has only simple poles at most at the points

$$
s=-2 n \pm \frac{2 \pi i k}{\log \eta}, \quad n, k=0,1,2, \cdots
$$

ii) $H(s) Z_{1 / \sqrt{D}}(s) \ll|t|^{1-\sigma+\varepsilon}$ for $-1 \leqq \sigma \leqq 1$, where $H(s)=\prod_{n=0}^{\infty}\left(1-\eta^{-s-2 n}\right)$.

Now we consider the integral

$$
\begin{aligned}
& I=\int_{1}^{X}\left(\int_{1}^{v} F(y, \alpha) \frac{d y}{y}\right) \frac{d v}{v} \\
& I=Z_{\alpha}(1)(X-1-\log X)-\frac{1}{2} \sum_{n \leq X}\left(\sum_{a m=n} \Lambda(d)\left(\{\alpha m\}-\frac{1}{2}\right)\right)\left(\log \frac{X}{n}\right)^{2}
\end{aligned}
$$

Here we remark that for any integral $k>k_{0}$, we can take T_{k} such that

$$
\frac{2 \pi k}{\log \eta}<T_{k}<\frac{2 \pi(k+1)}{\log \eta}, \quad \frac{\zeta^{\prime}}{\zeta}\left(\sigma \pm i T_{k}\right) \ll \log ^{2} T_{k}
$$

and $H\left(\sigma \pm i T_{k}\right)^{-1} \ll 1$ for $-1 \leqq \sigma \leqq 2$. With this T_{k} we have first

$$
I=Z_{\alpha}(1)(X-1-\log X)+\frac{1}{2 \pi i} \int_{2-i T_{k}}^{2+i T_{k}} \frac{\zeta^{\prime}}{\zeta}(s) Z_{\alpha}(s) \frac{X^{s}}{s^{3}} d s+O\left(\frac{X^{2}}{T_{k}^{2}}\right)
$$

Next, we move the line of the integration to $\left(-1+\delta-i T_{k},-1+\delta+i T_{k}\right)$ for any small positive $\delta<1$. Then

$$
\begin{aligned}
I= & Z_{\alpha}(1)(X-1-\log X)+\sum_{\mid \mathrm{m}} \sum_{\rho \mid<T_{k}} Z_{\alpha}(\rho) \frac{X^{\rho}}{\rho^{3}}+\sum_{n=-k}^{k} C_{n} X^{2 \pi i n / \log \eta} \\
& -X Z_{\alpha}(1)+A_{1} \log ^{3} X+A_{2} \log ^{2} X+A_{3} \log X+O\left(X^{2} T_{k}^{-2}\right) \\
& +O\left(T_{k}^{-3} \log ^{2} T_{k} \int_{-1+\delta}^{2} X^{\sigma}\left|Z_{\alpha}\left(\sigma \pm i T_{k}\right)\right| d \sigma\right) \\
& +O\left(X^{-1+\delta} \int_{-T_{k}}^{T_{k}}\left|\frac{\zeta^{1}}{\zeta}(-1+\delta+i t)\right|\left|Z_{\alpha}(-1+\delta+i t)\right||-1+\delta+i t|^{-3} d t\right) .
\end{aligned}
$$

The last two terms are $\ll X^{2}\left(\log ^{2} T_{k}\right) T_{k}^{-(1+\delta / 2)}+X^{-1+\delta}$. Letting k tend to ∞, we get our Theorem 4 .

References

[1] Franel, J.: Les suites de Farey et le problème des nombres premiers. Göttinger Nachrichten, pp. 198-201 (1924).
[2] Fujii, A.: A remark on the Riemann Hypothesis. Comment. Math. Univ. St. Pauli, 29, 195-201 (1980).
[3] Hardy, G. H., and J. E. Littlewood: Some problems of Diophantine approximation; The analytic character of the sum of a Dirichlet's series considered by Hecke. Abh. Math. Sem. Hamburg, 3, 57-68 (1923).
[4] Hecke, E.: Über analytische Funktionen und die Verteilung von Zahlen mod. eins. ibid., 1, 54-76 (1921).
[5] Huxley, M. N.: The distribution of Farey points. I. Acta Arith., XVIII, 281-287 (1971).
[6] Landau, E.: Vorelsungen über Zahlentheorie. Leipzig (1927).
[7] Lang, S.: Introduction to Diophantine Approximations. Addison-Wesley (1966).
[8] Prachar, K.: Primzahlverteilung. Springer (1957).
[9] Tichmarsh, E. C.: The theory of the Riemann zeta function. Clarendon Press, Oxford (1951).

