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75. On a Certain Decomposition of 2.-Dimensional Cycles
on a Product of Two Algebraic Surfaces

By Mariko OKAMOTO
Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kunihiko KODAIRA, M. J. A., June 11, 1981)

In this note, we define a type of decomposition for the 4-dimen-
sional eohomology group of a product of two algebraic surfaces and
we use such a decomposition for investigation of algebraic 2-cycles on
it. Details of this note will appear elsewhere.

I would like to express my thanks to Prof. N. Sasakura for useful
suggestions and encouragement.

§1. Hodge-Kiinneth-Transcendence-decomposition. Let .S and
S’ be non-singular projective surfaces defined over the field of complex
numbers C. We denote by C"(SxS’) the group of all cycles of co-
dimension 7 on S xS’ modulo rational equivalence, and we have a cycle
map cl, which to each cycle X € C"(S X S)&, Q associates the cohomol-
ogy class ¢l (X) e H"(SxS,C). Let H"(SXS’, Q). denote the image
of ¢l: C"(SXS®,Q—H"(SxS’,C). Then, using the Hodge decom-
position
a.n H"(SxS,C)= @ H(SxS,6C)

p+q=27
of the complex cohomology, we know
H"(S XS, @) SH"(SXS', C)YNH*"(S XS, Q) =H"(S XS, @)sroage-
We define
H%S, C)ons= lim H*U, C),
UCs, open

and we have the ‘‘transcendence-decomposition” of H?*S,C) with
respect to the intersection numbers,
(1.2) H* (S, C)=H*(S, C)ug@HXS, C)irans
where H*(S, C)., = H*S, @), ®eC (cf. Hodge and Atiyah [3],
Grothendieck [1]).

Using (1.1), (1.2) and the Kiinneth decomposition, we make the
following

Definition (1.3). The Hodge-Kiinneth-Transcendence-part (HKT-
part) of H*(SxS’, C) is its subspace

Hi..(S, SN ={H(S, C)RH"*(S’, C)}D{H**(S, C)RH**(S’, C)}
DH(S, C)iransQH" (S, C)rrans}s

where H"'(S, C)yans =H"'(S, CYNHXS, C)irans: We let p: H(S XS, C)
—H;,(S,S’) denote the projection, and let H3,.(S,S)u,=Hiu(S,S)
NHS XS, Que-
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Note that H, (S, S’) is equal to
{H* S, C)iransQHUS', Cizans} NH> (S XS, C).
By a result of Lieberman [7], the Kiinneth components of an
algebraic cycle class on S XS’ are again algebraic and
HY(SXS, Q.= @ \ {H?(S, QRH(S', @)}a-

p+a=
Thus we can show the following

Lemma (1.4). If the irregularities q(S)=q(S")=0, where q(S)

=dim; H*(S, C), then we have
HY(S XS, Q). ={H'S, QQQH(S', Q)}D{H(S, QQRQH*(S’, @)}
DIHA (S, Q) QHX(S', @)1} DH (S, S")asg

§2. Some basic properties. Throughout this section, S and S’
denote non-singular projective surfaces with q(S)=¢q(S’)=0.

Definition (2.1). Let X be a prime 2-cycle on SxS’, and let =,
(i=1,2) be the projection of SXS’ on S,S’. The prime cycle X is
degenerate if dim 7,(X) or dim #,(X) is less than two. We denote by
FC*(S, S") (SC*S xS")) the free abelian group generated by degenerate
prime cycle classes, and denote by FH*(S,S’) the image of FC*S,S’)
®; Q by the cycle map cl. (Hence FH*(S, S)YSH*(S XS, @)a.)

Definition (2.2). Denote by DC*SXS) (ZEC*(SxS")) the free
abelian group generated by intersections of two divisor classes on
SxS’, and DH*(S XS)=cl (DCH(SXS)®, Q) (SH*(SXS’, Q)u)-

Then we have

Theorem (2.3). i) FH'S,S)={H"S, QRH (S, @)}

S{H(S, QRDH (S, @YD{HYS, @) QH (S, Q).g}

ii) DH*SXS")SFH!S,S).
In particular, p(DH*(S xS"))=0. (For the map p, see (1.3).)

In fact, by the Poincaré duality, we have a natural bijection

Hom ¢ (H*(S, C)iranss H Sy Cirand) SH(S, C)irans@H (S, C)izans-
If X e FC*S, S’), then by the definition of H*(S, C).uns, the correspond-
ence
X( ) H*S, C)irans— HA (S, Cizans 3 =X () =0, (X - wf0)

is zero map. i) follows from this. By taking account of the divisorial
correspondences between S and S’ [5], [11], ii) follows from the facts
q(S)=q(S")=0. The last assertion follows from (1.4).

Corollary (2.4). Let X e C*(SxS) with p(cl(X))+0, then X is
not homologous to a sum of intersections of divisors.

Corollary (2.5). Let p,(S)=1, wherep,(S)=dim; H*(S’, C), and
let f:S—S" be a surjective morphism, then the graph I'; of f is mot
homologous to a sum of intersections of divisors.

((2.5) follows from considering the homomorphism
¥ H¥(S, C)—H**(S, C).)
Next we make
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Definitition (2.6). By a correspondence group between S and S/,

we mean
Cor* (S, S)=C*S xS /FCXS, S).

This is considered as a generalization of the correspondence group
of curves (cf. Weil [11]). The following proposition shows that HKT-
part is useful for investigation of Cor* (S, S’).

Proposition (2.7). There is a surjective homomorphism

cl: Cor* (S, 8)®; Q—H3 (S, 8w
where cl induced by the cycle map cl.

In fact, we have the following exact commutative diagram :

0——>FC%S, S)&Q, Q—> C*(S x §N®,; Q—>Cor*(S, K, Q—>0

cl’ cl cl

0'—‘) FHA(S, S,) —_—> H4(S >< Sl, Q)alg——pT) Hékt(s’ S/)&lg ——_>0

0 0 0
where p’, ¢l’ are the restrictions of p, c¢l, respectively. (We note that
taking some adequate equivalence relation ~ finer than homological
equivalence, instead of rational equivalence, we have the correspond-
ences CorZ (S, S, and surjective homomorphism cl_: Cor’(S, S)®, Q
—H}(S, 8. For example, for homological equivalence we have
the isomorphism clyon, : Coriym, (S, 8)®; Q= Hi(S, SN

For the remainder of this note, we investigate the HKT-parts of
algebraic 2-cycles on products of certain two surfaces.

§3. Singular K3 surfaces. By a singular K3 surface S, we
mean an algebraic K3 surface (defined over C) whose Picard number
o(S) equals to dim, H"'(S,C). (Here we let o(S)=dim; H*(S, C),;.)
We note that a singular K3 surface S satisfies ¢(S)=0, p,(S)=1 and
H"(S, C)rans=0.

We assume that S and S’ are singular K3 surfaces. For the de-
tails on these surfaces, see Shioda and Inose [9]. Let v and o’ be re-
spectively bases of H'(S, 2%) and H'(S’, 2%), and let {r,, 7.} and {71, 13}
be respectively bases of H,(S, @Q)iruns and Hy (S, Q)ans. Let

z‘=j w/f o and U:j}w’/!}w’.

Let E. denote the elliptic curve of the form C/Z+:Z. Then we have
Theorem (3.1). H}.(S, SNioage =Cor (K, E,)&X, Q
=Hom (£, E )&, Q
where H} (S, Suoage =Hi(S, S) NH (S XS, Q) and Cor (K., E,) denotes
the correspondence group between E. and E, (cf. Weil [11]).
§4. Some quotient surfaces. Let C; be the algebraic curve in
P? defined by

up=117_, (y,—a,u) (i=1,2,3,4, and n: prime number, >2).
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(We note that if a,,=¢’, {=exp (2z+/'—1/n), for all j=1, .-, n, then C,
is the Fermat curve of degree n.) Let G, denote the group of %n-th
roots of unity : G,={,>. We introduce an action of G, on C,:

(%o 2 Uy 2 U) > (Ug 2 Uy 2 CUhy).

We define an embedding 4,: G,—G,XG, A<r<n—1) by (0
:;(C, ¢, and we set GV =Im (4,). Then G™ and G act naturally on
S=0C,xC, and §'=C,xC,, and G">=G"xG* acts on SxS (1<,
s<n—1). Let S, and S/ be non-singular models of S/G™ and §'/G®
respectively (1<7, s<n—1). Note that one can take S, (resp. S7) to
be the surface in P* defined by

I =1 (0, — 0y;2:) =[] F=1 (2, — ay;,)

(resp. []7.; (@s—a;2) = []%; (@, —a,;2) (cf. Sasakura [8]).
(We also note ¢(S,)=¢(S})=0 and that if C, are the Fermat curves, for
all i, then S, and S] are the Fermat surfaces.)

By a simple calcgla:tion, we have o
(4.1) Hi, (S, S’)alg’:vlsrggn . {H3o Sy 8)arg} ™"

where the right side is G"*-invariant part, and we have a natural
homomorphism

(4.2)  {Hi8, 800" —>Hu(S,, SDae (L7, s<n—1).

Since H**(S, C)¢” = H>(S,, C), the above homomorphism is non-zero.

Now we let J(C,) be the Jacobian variety of C, (i=1,2,3,4) and
J=Hom (J(C), J(C))@Hom (J(C,), J(C)). Then, from (4.1) and (4.2),
we have a natural homomorphism

07 J>Hp (S, 8Dy AZ7, s=n—1).

The following facts are also checked easily, by using (4.1) and (4.2).

Theorem (4.3). There exists (r,s), 1<r, s<n—1, such that
Im (67%) 0.

Theorem (4.4). For isogenies u: J(C)—J(C;) and v : J(C))—JI(C))
we have 67 (u@v)£0 for all 1<r, s<n—1.

Thus for the isogenies # and v, 6"'(u®v) is the HKT-part of an
algebraic cycle class on S, xS, which is not a sum of intersection of
divisors. (More detailed structures of the HKT-part of the product
of the quotient surfaces S, XS, will be given elsewhere.)
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