75. On a Certain Decomposition of 2-Dimensional Cycles on a Product of Two Algebraic Surfaces

Ву Магіко Окамото

Department of Mathematics, Tokyo Metropolitan University (Communicated by Kunihiko Kodaira, M. J. A., June 11, 1981)

In this note, we define a type of decomposition for the 4-dimensional cohomology group of a product of two algebraic surfaces and we use such a decomposition for investigation of algebraic 2-cycles on it. Details of this note will appear elsewhere.

I would like to express my thanks to Prof. N. Sasakura for useful suggestions and encouragement.

§ 1. Hodge-Künneth-Transcendence-decomposition. Let S and S' be non-singular projective surfaces defined over the field of complex numbers C. We denote by $C^r(S \times S')$ the group of all cycles of codimension r on $S \times S'$ modulo rational equivalence, and we have a cycle map cl, which to each cycle $X \in C^r(S \times S') \otimes_{\mathbb{Z}} \mathbb{Q}$ associates the cohomology class $cl(X) \in H^{2r}(S \times S', C)$. Let $H^{2r}(S \times S', \mathbb{Q})_{\text{alg}}$ denote the image of $cl: C^r(S \times S') \otimes_{\mathbb{Z}} \mathbb{Q} \to H^{2r}(S \times S', C)$. Then, using the Hodge decomposition

(1.1)
$$H^{2r}(S \times S', C) \cong \bigoplus_{p+q=2r} H^{p,q}(S \times S', C)$$

of the complex cohomology, we know

 $H^{2r}(S \times S', \mathbf{Q})_{\text{alg}} \subseteq H^{r,r}(S \times S', \mathbf{C}) \cap H^{2r}(S \times S', \mathbf{Q}) = H^{2r}(S \times S', \mathbf{Q})_{\text{Hodge}}.$ We define

$$H^2(S, C)_{ ext{trans}} = \underset{U \subset S, \, ext{open}}{\varinjlim} H^2(U, C),$$

and we have the "transcendence-decomposition" of $H^2(S, \mathbb{C})$ with respect to the intersection numbers,

(1.2)
$$H^{2}(S, C) \cong H^{2}(S, C)_{alg} \oplus H^{2}(S, C)_{trans}$$

where $H^2(S, \mathbb{C})_{\text{alg}} = H^2(S, \mathbb{Q})_{\text{alg}} \otimes_{\mathbb{Q}} \mathbb{C}$ (cf. Hodge and Atiyah [3], Grothendieck [1]).

Using (1.1), (1.2) and the Künneth decomposition, we make the following

Definition (1.3). The Hodge-Künneth-Transcendence-part (HKT-part) of $H^4(S \times S', C)$ is its subspace

$$H^4_{
m hkt}(S,S') \cong \{H^{2,0}(S,C) \otimes H^{0,2}(S',C)\} \oplus \{H^{0,2}(S,C) \otimes H^{2,0}(S',C)\} \\ \oplus \{H^{1,1}(S,C)_{
m trans} \otimes H^{1,1}(S',C)_{
m trans}\},$$

where $H^{1,1}(S, C)_{\text{trans}} = H^{1,1}(S, C) \cap H^2(S, C)_{\text{trans}}$. We let $p: H^4(S \times S', C) \rightarrow H^4_{\text{hkt}}(S, S')$ denote the projection, and let $H^4_{\text{hkt}}(S, S')_{\text{alg}} = H^4_{\text{hkt}}(S, S') \cap H^4(S \times S', Q)_{\text{alg}}$.

Note that $H_{hkt}^4(S, S')$ is equal to

$$\{H^2(S, \mathbf{C})_{\text{trans}} \otimes H^2(S', \mathbf{C})_{\text{trans}}\} \cap H^{2,2}(S \times S', \mathbf{C}).$$

By a result of Lieberman [7], the Künneth components of an algebraic cycle class on $S \times S'$ are again algebraic and

$$H^4(S imes S',oldsymbol{Q})_{\mathrm{alg}}\!\cong\!\bigoplus_{p+q=4}\{H^p(S,oldsymbol{Q})\!\otimes\! H^q(S',oldsymbol{Q})\}_{\mathrm{alg}}.$$

Thus we can show the following

Lemma (1.4). If the irregularities q(S) = q(S') = 0, where $q(S) = \dim_{\mathbb{C}} H^{0,1}(S, \mathbb{C})$, then we have

$$\begin{split} H^{\scriptscriptstyle 4}(S\times S', \boldsymbol{Q})_{\scriptscriptstyle \mathrm{alg}} &\cong \{H^{\scriptscriptstyle 4}(S, \boldsymbol{Q}) \otimes H^{\scriptscriptstyle 0}(S', \boldsymbol{Q})\} \oplus \{H^{\scriptscriptstyle 0}(S, \boldsymbol{Q}) \otimes H^{\scriptscriptstyle 4}(S', \boldsymbol{Q})\} \\ &\oplus \{H^{\scriptscriptstyle 2}(S, \boldsymbol{Q})_{\scriptscriptstyle \mathrm{alg}} \otimes H^{\scriptscriptstyle 2}(S', \boldsymbol{Q})_{\scriptscriptstyle \mathrm{alg}}\} \oplus H^{\scriptscriptstyle 4}_{\scriptscriptstyle \mathrm{hkt}}(S, S')_{\scriptscriptstyle \mathrm{alg}}. \end{split}$$

§ 2. Some basic properties. Throughout this section, S and S' denote non-singular projective surfaces with q(S) = q(S') = 0.

Definition (2.1). Let X be a prime 2-cycle on $S \times S'$, and let π_i (i=1,2) be the projection of $S \times S'$ on S,S'. The prime cycle X is degenerate if $\dim \pi_1(X)$ or $\dim \pi_2(X)$ is less than two. We denote by $FC^2(S,S')$ ($\subseteq C^2(S \times S')$) the free abelian group generated by degenerate prime cycle classes, and denote by $FH^4(S,S')$ the image of $FC^2(S,S')$ $\otimes_Z Q$ by the cycle map cl. (Hence $FH^4(S,S')\subseteq H^4(S \times S',Q)_{alg}$.)

Definition (2.2). Denote by $DC^2(S \times S')$ ($\subseteq C^2(S \times S')$) the free abelian group generated by intersections of two divisor classes on $S \times S'$, and $DH^4(S \times S') = cl (DC^2(S \times S') \otimes_{\mathbb{Z}} \mathbb{Q})$ ($\subseteq H^4(S \times S', \mathbb{Q})_{alg}$).

Then we have

Theorem (2.3). i)
$$FH^4(S, S') = \{H^4(S, \mathbf{Q}) \otimes H^0(S', \mathbf{Q})\}$$

 $\oplus \{H^0(S, \mathbf{Q}) \otimes H^4(S', \mathbf{Q})\} \oplus \{H^2(S, \mathbf{Q})_{alg} \otimes H^2(S', \mathbf{Q})_{alg}\},$

ii) $DH^4(S\times S')\subseteq FH^4(S,S')$.

In particular, $p(DH^4(S \times S')) = 0$. (For the map p, see (1.3).)

In fact, by the Poincaré duality, we have a natural bijection

 $\operatorname{Hom}_{\boldsymbol{C}}(H^2(S,\boldsymbol{C})_{\operatorname{trans}},H^2(S',\boldsymbol{C})_{\operatorname{trans}}) \cong H^2(S,\boldsymbol{C})_{\operatorname{trans}} \otimes H^2(S',\boldsymbol{C})_{\operatorname{trans}}.$ If $X \in FC^2(S,S')$, then by the definition of $H^2(S,\boldsymbol{C})_{\operatorname{trans}}$, the correspondence

$$X(\): H^2(S, C)_{\text{trans}} \to H^2(S', C)_{\text{trans}}; \ u \mapsto X(u) = \pi_{2*}(X \cdot \pi_1^* u)$$
 is zero map. i) follows from this. By taking account of the divisorial correspondences between S and S' [5]. [11], ii) follows from the facts

correspondences between S and S' [5], [11], ii) follows from the facts q(S) = q(S') = 0. The last assertion follows from (1.4).

Corollary (2.4). Let $X \in C^2(S \times S')$ with $p(cl(X)) \neq 0$, then X is not homologous to a sum of intersections of divisors.

Corollary (2.5). Let $p_g(S') \ge 1$, where $p_g(S') = \dim_{\mathbb{C}} H^{2,0}(S', \mathbb{C})$, and let $f: S \to S'$ be a surjective morphism, then the graph Γ_f of f is not homologous to a sum of intersections of divisors.

((2.5) follows from considering the homomorphism

$$f^*: H^{2,0}(S', C) \rightarrow H^{2,0}(S, C).)$$

Next we make

Definitition (2.6). By a correspondence group between S and S', we mean

$$Cor^{2}(S, S') = C^{2}(S \times S') / FC^{2}(S, S').$$

This is considered as a generalization of the correspondence group of curves (cf. Weil [11]). The following proposition shows that HKT-part is useful for investigation of $Cor^2(S, S')$.

Proposition (2.7). There is a surjective homomorphism

$$\overline{cl}: \operatorname{Cor}^{2}(S, S') \otimes_{\mathbf{Z}} \mathbf{Q} \rightarrow H^{4}_{\operatorname{hkt}}(S, S')_{\operatorname{alg}}$$

where \overline{cl} induced by the cycle map cl.

In fact, we have the following exact commutative diagram:

$$0 \longrightarrow FC^{2}(S, S') \otimes_{\mathbf{Z}} \mathbf{Q} \longrightarrow C^{2}(S \times S') \otimes_{\mathbf{Z}} \mathbf{Q} \longrightarrow \operatorname{Cor}^{2}(S, S') \otimes_{\mathbf{Z}} \mathbf{Q} \longrightarrow 0$$

$$\downarrow cl' \qquad \qquad \downarrow cl \qquad \qquad \downarrow \overline{cl}$$

$$0 \longrightarrow FH^{4}(S, S') \longrightarrow H^{4}(S \times S', \mathbf{Q})_{\operatorname{alg}} \xrightarrow{p'} H^{4}_{\operatorname{hkt}}(S, S')_{\operatorname{alg}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

where p', cl' are the restrictions of p, cl, respectively. (We note that taking some adequate equivalence relation \sim finer than homological equivalence, instead of rational equivalence, we have the correspondences $\operatorname{Cor}^2_\sim(S,S')$, and surjective homomorphism $\overline{cl}_\sim:\operatorname{Cor}^2_\sim(S,S')\otimes_Z Q \to H^4_{\mathrm{hkt}}(S,S')_{\mathrm{alg}}$. For example, for homological equivalence we have the isomorphism $\overline{cl}_{\mathrm{hm}}:\operatorname{Cor}^2_{\mathrm{hom}}(S,S')\otimes_Z Q \cong H^4_{\mathrm{hkt}}(S,S')_{\mathrm{alg}}$.)

For the remainder of this note, we investigate the HKT-parts of algebraic 2-cycles on products of certain two surfaces.

§ 3. Singular K3 surfaces. By a singular K3 surface S, we mean an algebraic K3 surface (defined over C) whose Picard number $\rho(S)$ equals to $\dim_C H^{1,1}(S,C)$. (Here we let $\rho(S) = \dim_C H^2(S,C)_{\text{alg.}}$) We note that a singular K3 surface S satisfies q(S) = 0, $p_{\varrho}(S) = 1$ and $H^{1,1}(S,C)_{\text{trans}} \cong 0$.

We assume that S and S' are singular K3 surfaces. For the details on these surfaces, see Shioda and Inose [9]. Let ω and ω' be respectively bases of $H^0(S, \Omega_S^2)$ and $H^0(S', \Omega_{S'}^2)$, and let $\{\gamma_1, \gamma_2\}$ and $\{\gamma'_1, \gamma'_2\}$ be respectively bases of $H_0(S, Q)_{traps}$ and $H_0(S', Q)_{traps}$. Let

be respectively bases of
$$H_2(S, \boldsymbol{Q})_{\text{trans}}$$
 and $H_2(S', \boldsymbol{Q})_{\text{trans}}$. Let $\tau = \int_{\tau_1} \omega \Big/ \int_{\tau_2} \omega$ and $\eta = \int_{\tau_1'} \omega' \Big/ \int_{\tau_2'} \omega'$.

Let E_{τ} denote the elliptic curve of the form $C/Z+\tau Z$. Then we have

Theorem (3.1).
$$H_{\text{hkt}}^4(S, S')_{\text{Hodge}} \cong \text{Cor } (E_{,}, E_{,}) \otimes_{\mathbb{Z}} \mathbb{Q}$$

 $\cong \text{Hom } (E_{,}, E_{,}) \otimes_{\mathbb{Z}} \mathbb{Q}$

where $H^4_{\mathrm{hkt}}(S, S')_{\mathrm{Hodge}} = H^4_{\mathrm{hkt}}(S, S') \cap H^4(S \times S', \mathbf{Q})$ and $\mathrm{Cor}(E_{\tau}, E_{\eta})$ denotes the correspondence group between E_{τ} and E_{η} (cf. Weil [11]).

§ 4. Some quotient surfaces. Let C_i be the algebraic curve in P^2 defined by

$$u_2^n = \prod_{j=1}^n (u_1 - a_{ij}u_0)$$
 (i=1, 2, 3, 4, and n: prime number, >2).

(We note that if $a_{ij} = \zeta^j$, $\zeta = \exp(2\pi\sqrt{-1}/n)$, for all $j = 1, \dots, n$, then C_i is the Fermat curve of degree n.) Let G_n denote the group of n-th roots of unity: $G_n = \langle \zeta \rangle$. We introduce an action of G_n on C_i :

$$(u_0:u_1:u_2)\mapsto (u_0:u_1:\zeta u_2).$$

We define an embedding $i_r: G_n \to G_n \times G_n$ $(1 \le r \le n-1)$ by $i_r(\zeta) = (\zeta, \zeta^r)$, and we set $G^{(r)} = \operatorname{Im}(i_r)$. Then $G^{(r)}$ and $G^{(s)}$ act naturally on $\tilde{S} = C_1 \times C_2$ and $\tilde{S}' = C_3 \times C_4$, and $G^{(r,s)} = G^{(r)} \times G^{(s)}$ acts on $\tilde{S} \times \tilde{S}'$ $(1 \le r, s \le n-1)$. Let S_r and S'_s be non-singular models of $\tilde{S}/G^{(r)}$ and $\tilde{S}'/G^{(s)}$ respectively $(1 \le r, s \le n-1)$. Note that one can take S_1 (resp. S'_1) to be the surface in P^3 defined by

$$\prod_{j=1}^{n} (x_3 - a_{1j}x_2) = \prod_{j=1}^{n} (x_1 - a_{2j}x_0)$$

(resp. $\prod_{j=1}^{n} (x_3 - a_{3j}x_2) = \prod_{j=1}^{n} (x_1 - a_{4j}x_0)$) (cf. Sasakura [8]).

(We also note $q(S_1) = q(S_1') = 0$ and that if C_i are the Fermat curves, for all i, then S_1 and S_1' are the Fermat surfaces.)

By a simple calculation, we have

$$(4.1) \hspace{1cm} H^{4}_{\mathrm{hkt}}(\tilde{S},\tilde{S}')_{\mathrm{alg}} \cong \bigoplus_{1 \leq r,s \leq n-1} \{H^{4}_{\mathrm{hkt}}(\tilde{S},\tilde{S}')_{\mathrm{alg}}\}^{G^{(r,s)}},$$

where the right side is $G^{(r,s)}$ -invariant part, and we have a natural homomorphism

$$(4.2) \qquad \overline{\{H^4_{\mathrm{hkt}}(\tilde{S},\tilde{S}')_{\mathrm{alg}}\}^{g^{(r,s)}}} \rightarrow H^4_{\mathrm{hkt}}(S_r,S_s')_{\mathrm{alg}} \qquad (1 \leq r, \, s \leq n-1).$$

Since $H^{2,0}(\tilde{S}, \mathbb{C})^{G^{(r)}} \cong H^{2,0}(S_r, \mathbb{C})$, the above homomorphism is non-zero.

Now we let $J(C_i)$ be the Jacobian variety of C_i (i=1,2,3,4) and $J = \text{Hom}(J(C_1), J(C_3)) \otimes \text{Hom}(J(C_2), J(C_4))$. Then, from (4.1) and (4.2), we have a natural homomorphism

$$\theta^{r,s}: J \rightarrow H_{hkt}^4(S_r, S'_s)_{alg}$$
 $(1 \leq r, s \leq n-1).$

The following facts are also checked easily, by using (4.1) and (4.2).

Theorem (4.3). There exists (r, s), $1 \le r$, $s \le n-1$, such that $\operatorname{Im}(\theta^{r,s}) \ne 0$.

Theorem (4.4). For isogenies $u: J(C_1) \rightarrow J(C_3)$ and $v: J(C_2) \rightarrow J(C_4)$ we have $\theta^{r,s}(u \otimes v) \neq 0$ for all $1 \leq r$, $s \leq n-1$.

Thus for the isogenies u and v, $\theta^{1,1}(u \otimes v)$ is the HKT-part of an algebraic cycle class on $S_1 \times S_1'$ which is not a sum of intersection of divisors. (More detailed structures of the HKT-part of the product of the quotient surfaces $S_1 \times S_1'$ will be given elsewhere.)

References

- Grothendieck, A.: Le groupe de Brauer. Dix Exposés sur la cohomologie des schémas. North-Holland (1968).
- [2] —: SGA5 Cohomologie l-adique et fonctions L. Lect. Notes in Math., vol. 589, Springer (1977).
- [3] Hodge, W. V. D., and Atiyah, M. F.: Integrals of the second kind on an algebraic variety. Ann. of Math., 62, 56-91 (1955).
- [4] Kleiman, S. L.: Algebraic cycles and the Weil conjectures. Dix Exposés sur la cohomologie des schémas. North-Holland, pp. 359-386 (1968).

- [5] Lang, S.: Abelian Varieties. Interscience Pub., New York (1959).
- [6] Lieberman, D.: Higher Picard varieties. Amer. J. Math., 90, 1165-1199 (1968).
- [7] —: Numerical and homological equivalence of algebraic cycles on Hodge manifolds. ibid., 90, 366-374 (1968).
- [8] Sasakura, N.: On some results on the Picard numbers of certain algebraic surfaces. J. Math. Soc. Japan, 20, 297-321 (1968).
- [9] Shioda, T., and Inose, H.: On singular K3 surfaces. Complex Analysis and Algebraic Geometry, Iwanami-Cambridge Univ. Press, pp. 119-136 (1977).
- [10] Tate, J. T.: Algebraic cycles and poles of the zeta function. Arithmetical Algebraic Geometry. Happer & Row, New York, pp. 93-110 (1965).
- [11] Weil, A.: Variétés Abéliennes et Courbes Algébriques. Hermann, Paris (1948).