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Abstract. In this note we consider some problems concerning the
asymptotic equivalence of bounded solutions of integro-differential
equations.

Consider the perturbed system of integro-differential equations

®) @' (t)=A@®)x() +£ B(t, s)z(s)ds+ f(@)(@),  t=t,

where A4, B are given nxXn matrices and the perturbation % vector
S(@)(.) is an operator mapping the set of functions defined for t=%,
into itself ; for example, typical perturbations are of the form

F@E)=Ft, () or j K(t, s, x(s))ds
or () j " K(t,s, x(s))ds.

We are interested in comparing the bounded solutions of (P) with
those of the related unperturbed linear system

@ 70 =~A(t>y(t)+j: B, s)y(s)ds,  t=t,.

In particular, we will determine conditions on A, B and f so that each
bounded solution y of (L) corresponds to a bounded solution = of (P),
in such a way that their difference y —« tends to zero asymptotically,
and conversely, each bounded solution z of (P) corresponds to a bounded
solution y of (L) such that their difference x—v tends again to zero
asymptotically. In other words, the systems (P) and (L) should be
asymptotically equivalent.

J. A. Nohel ([7], [8]) has established the asymptotic equivalence of
(P) and (L) in the case that the linear system (L) is asymptotically
stable. Our aim is to cover the cases that the linear system (L) is
conditionally asymptotically stable, conditionally uniformly asymp-
totically stable and conditionally uniformly stable.

The fundamental solution matrix (or resolvent kernel) of (L) is
the solution Y (¢, s) of the matrix equation

ait Y(t,8)=ADY(E, s)+j‘ B, Y (r,8)dr,  t=s>t,
Y(s,8)=I,
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2, 0<2< 0,
(1) lim sup w(s, ) =0,

t—oo St
then, corresponding to each bounded solution y of (L), there exists a
bounded solution x of (P) such that

(2) lim |2(t) -y (®)|=0.

Conversely, to each bounded solution x of (P) there corresponds a
bounded solution y of (L) such that (2) holds.

Theorem 2. Suppose that H? and H, hold for 1<q<oo. If for
every 2, 0<1< o0, and p, 1<p<oo, p~t4+q =1,

(3) r w¥(s, Nds < oo,

then the conclusions of Theorem 1 remain true.

The above theorems in the case p=0 (i.e. (L) asymptotically stable)
are reduced to the results of Nohel ([7], [8]). In the differential equa-
tions case (B=0) they are reduced to the results of Coppel [2] and
Hallam [5]. Note that in the latter case, it turns out that P(¢)
=—P, Y (t), where Y(¢) is a fundamental solution matrix, and so
W(t,s)=Y@®)P,Y '(s) and V(t,s)=Y@)P,Y"'(s), where P, P, are com-
plementary projections.

The conditions on w in Theorem 2 can be slightly extended in the
cost of slightly restricting the hypothesis H?. Thus the next theorem
generalizes to integro-differential equations a result of Lovelady [6]
for differential equations.

Theorem 3. Supposethat H, holds and that there exist constants
K, q, with K>0 and 1<q<oo, such that for each t=t,

¢ [E+1 1/q o ppel i
@ {5 [T e sy {5 [T we 91 as) <k
If for every 2, 0<a<oo, and p, 1<p<oo, p~l+q-'=1,
(5) lim - w?(s, Dds =0,

t—ooo Jt

then the conclusions of Theorem 1 remain true.

The next theorem establishes the asymptotic equivalence of (P)
and (L) under conditions which imply that (L) is conditionally uni-
formly asymptotically stable.

Theorem 4. Suppose that H and H, hold. If for every A, 0<2
< o0, either (1) or (3) is valid, the latter for p such that 1<p<oo, then
the conclusions of Theorem 1 remain true.

When the linear system (L) is conditionally uniformly stable, the
following theorem establishes the asymptotic equivalence of (P) and (L)
generalizing the differential equations result of Brauer and Wong [1].

Theorem 5. Suppose that Hy and H, hold. If for every 2, 0<2
< o0,



308 M. A. BOUDOURIDES [Vol. 57(A),

where I is the nXn identity matrix. If s>t=>t,, we define Y (¢, s)=0.
In what follows, we will assume that A(t) and B(t,s) are locally inte-
grable for t=>1t, and t=s>t, respectively. Then (cf. [8]), Y (¢, s) exists,
it is continuous and, for locally integrable perturbations f(x)(.), (P)
is equivalent to the following Volterra integral equation

2O =Y (¢, t)a(ty) + j Y(t, ) f@)(s)ds,  t=t,

We will assume that there exists an n X n matrix P(%), locally inte-
grable for ¢=t,, in terms of which we define the following matrices
(in the notation of [3])

V(ta S)=Y(t’ 8)—‘Y(t7 to)P(S), t0§8§t,
W(t,s)=—Y(t,t)P(s), L=t<s.
Concerning the linear system (L) we make the following hypotheses

H?: there exist constants K, ¢, with K>0 and 1<q< o, such that
for each t>t,

{.[; [V, )l ds}l/q'l’ {J:O |W (¢, s)| ds}l/qu :

H? : there exist constants K, K,, a,, a,, all positive, such that for
each t >t
[V, s)|<K,e= ¢, t<s<t,
| W(t, 8)|<K,e -9, t,<t<s;
Hy : there exists a constant K >0 such that for each t>¢,
[V, 9|<K, t=s<t,
(W, 8)|=K, t,=t<s;
H,: for each fixed T =>t,
lim tT V2, $)| ds =0.

t—oo

J. M. Cushing ([3], [4]) has shown that the above hypotheses are
necessary and sufficient conditions for the admissibility of certain
function spaces and for conditional stability of (I.). Moreover, he has
shown that conditional stability is preserved for (P) under appropriate
perturbations f(x)(.).

Let C denote the Banach space of continuous and bounded vector
functions w(t) for t=%,. The norm of u € C is || u|=sup,,, |u(t)|.

As for the perturbation f(z)(.), we assume that f:C—C is con-
tinuous and such that for any x € C and t=¢,

|f @O =0, 2D,
where w(t,r) is a given nonnegative function which is continuous in
t=>0 for each fixed >0 and nondecreasing in >0 for each fixed £=>0.

Now we are in the position to establish the asymptotic equivalence
of (P) and (L) under conditions which imply that (L) is conditionally
asymptotically stable.

Theorem 1. Suppose that H? and H, hold for q=1. If for every
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(6) j o(s, ) ds< oo,

then the conclusions of Theorem 1 remain true.

The proofs of all the above theorems are similar to those of the
differential equations cases (cf. [1], [2], [5], [6]). Here we will only
indicate the essential steps of proof.

On an appropriate closed ball S of C we define, for given y e C
solution of (L), the mapping

T3 () =y<t)+ﬁ Vi, s)f(x)(s)ds+f W(t, $)/ (@) (s)ds.

Using the hypotheses on V, W and w, we obtain (through Holder’s
inequality) that T is a continuous mapping of S into itself. Clearly
TS is uniformly bounded. Since z=T2« solves the integral equation

«=Yt, )yt - | POr@©ds}+ [ Yt 95 @@ds,
it follows that z solves the nonhomogeneous linear system
YO=A®D+| Bt 9e)ds+ @),

i.e. TS is equicontinuous. Hence, Schauder’s Fixed Point theorem
implies the existence of a solution x € C of (P), which is easily seen to
verify (2). The converse is quite simple.
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