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70. An Andalogue of Paley-Wiener Theorem on a Real
Rank 2 Semisimple Lie Group

The Case of 1 Dimensional z-Sherical Functions

By Takeshi KAWAZOE
Department of Mathematics, Faculty of Science and Technology,
Keio University

(Communicated by Kosaku YOSIDA, M. J. A., June 11, 1981)

In the previous paper [4] we obtained an analogue of Paley-Wiener
theorem on SU(2,2). In this article we shall give more precise results
about this theorem, particularly, replace the condition (C1) in [4] by
explicit conditions (cf. (C2)-(C4) in § 5).

1. Notation and assumptions. Let G be a connected semisimple
Lie group with finite center and G=KAN an Iwasawa decomposition
for G. Let M be the centralizer of A in K and put P=MAN. Then
P is a minimal parabolic subgroup of G. We denote the Lie algebras
by small German letters. Let 2 denote the set of all roots for the
pair (g, a) and W the corresponding Weyl group. Let X+ denote the
set of all positive roots in 2 and a* the corresponding positive Weyl
chamber in a. Put p=(1/2) 3 ,cs+ 8. For simplicity we denote the
dual space of a by & and its complexification by F¢. Put F*={1eF;
{A,a)>0 for all € X*} and A*=expa”.

For any root « in X let a, denote the hyperplane of «=0 in a and
put A,=exp a,. Let L, denote the centralizer of A, in G. Then it is
easy to see that L, =M A,, where M,=,cxq, Ker|y| (X(L,) is the
group of all continuous homomorphisms of L, into the multiplicative
group of real numbers). Then we can define the parabolic subgroup
P,=M_AN,_, such that N.CN. Put *P,=PNM, and *A,=ANM,,
*N,=NNM, Then itis easy to see that *P,=M*A,*N, is a minimal
parabolic subgroup of M, and dim *A,=1. For this pair (M,, *A,) we
define *p, *F,, *F¢, *F* and *A} by the same way, where 1(*a)>0 for
*ae*Ar and 1e F-.

Let t=(z,, 7,) be a unitary double representation of K on a finite
dimensional Hilbert space V. Let C(G,z) denote the r-spherical
Schwartz space on G and °C(G, ) the closed subspace of C(G,7) con-
sisting of all cusp forms. For any parabolic subgroup Q=M,4,N, of
G let C,(G,t) denote the closed subspace of C(G, ) consisting of all
wave packets corresponding to @ (cf. [2, §26]). Letr, and ¢y (ae3*)
denote the restrictions of = to M and M,NK respectively. Then for
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the 7z, (resp. ry,)-spherical Schwartz space C(M,z,) (resp. C(M,, ty,)
we define the above closed subspaces by the same way.

In this article we accept the following assumptions; (Al) dim A
=2, (A2) dim V=1, (A3) C(G,)=°"C(G, )P (G, )DCAG,7) for «
e CL(F*), (A4) {sa; se W}NY"C{a, e, e}, where {e,e,} is the funda-
mental system of positive roots. In these assumptions, (A2) is essen-
tial, for the operators: @(v:a) (¢ € A*) and C(s;v) (s W) (see §§3,4)
are C-valued meromorphic functions of v on ¥° and moreover @@ : a)
is holomorphic on F+ v —1CL(F*) under (A2).

2. Fourier transform on C(G,z). Let e, A<k<n’) and .,
A <i<l)(ef. § 3, Theorem 4) denote orthonormal basis for L, =°C(G, 7)
and L, =°C(M,,t,,) respectively. Then for f in C(G,7) its Fourier
transform E'(f) is defined as follows ;

E() =S, e)ea®(F (a1 v )) L@f0) wed,andved),
where f(ro, i, v)=(f, E(P: ¥, ;i v,: +) and f)=(f, EP:1:v: ")) (see
[3]). Obviously, E(f) is contamed in C"®C(F ) ®C(F), where C(F,)
(resp. C(%F)) is the usual Schwartz space on &, (resp. F). Here we
define the closed subspace C(¢F,)% of C(<,)" (resp. C(F), of C(F)) as in
[8]. Then we obtained the following theorem in [3].

Theorem 1. The Fourier transform sets up a homeomorphism
of C(G,7)="C(G, ©)PC,(G, D)DCAG, 7) and C(G, v) = C*BC(F Y, DC(F) .
The in'verse trcmsfown is given by

T@=5 (1 e)e@+ 3 i [ 100 s)B@. s DF (v,

+I—W—I [rOBE@: 1 0f0a  @eo),
where W, is the Weyl group for (G, A,) and o, A <i<U') is the discrete
series for M, such that , ; is the matrixz coefficient of a,.

Before stating the main result, we have to obtain some informa-
tion for M, (see § 3) and calculate residue integrals (see § 4).

3. Analysis on M,. Let us agree to write the Harish-Chandra
expansion of the Eisenstein integral for (M,, *P,) as follows ;
E(P,:1:%,: *a)=e "rtost) @ (*y,: a)C,(*v,)+ D (—*v, : ¥*a)C (—*v,)}
for *a e *A} and *y, € ¥*F°. Let {*&,; 1<1<1} denote the set of all poles
of ,(*v,: *a)C,(*v)* ' on *F,++ —1CL(*F}). Then it is easy to see
that *¢, e /—1*F:. Here we note that gx(*v,), the p-function for
M,, *P,), has at most simple pole or zero at *y,=*&,-£0 and @,(*v, : *a)
is holomorphic on *F, 4+ —1CL(*%;). Therefore using the relation:
1 (v )C (v )*C (v, ) =1 (*v, € *F¢), we can obtain the following

Lemma 3. Fach *& 1<i<l) is a simple pole of p,(*v,) and
E(*P,:1:*¢,: *a) (*a e *A}) is of the form:

( I) e-*P(log(*a))@a(*ei . *a)ca(*gi)#__o’ or
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(ID) eretost@ (*&,: *@)C(*6) + P —*v, : *Q)C.(—*v) |eyymrne }-
In both cases E(*P,:1:*¢,:m) (me M,) is contained in °C(M,, ;).

For simplicity we put E,=E(*P,:1:*¢,: .) (1<i<l) and suppose
that F,#0 for 1<i<l' and zero for otherwise. Then applying the
results in the case of real rank 1 (cf. [3]), we conclude the following

Theorem 4. FEach E, QA<i<l) is of the form (I) in Lemma 3
whose L*-norm is given by | E,|'= — p;4, where

#a,i=2ﬂﬁi Res g, (*v,)

Fug=*Eq

and each E, (I 4+1<1<1) is of the form (II). Moreover
(Ve =E(—pt,)"*; 1<V}
18 an orthonormal basis for °C(M ., ty,).

Let f be in Cy(G, ), where C2(G, 7) is the set of all C~, z-spherical
functions on G with compact support. Then it is easy to see from the
above results that f(y..,v)=(—p,)" (. +*¢) @.eF,, 1<i<l).
According to Theorem 1, we decompose f as f=f,~+f,+ /., where f,
€ °C(G,7), f1eC(G,7) and f,eC,(G, 7). Then using the inverse
transform for f, and Lemma 5 in [4], we have the following

Corollary 5.

Sfilx)= 2zv —1 Res p,@.+*v,)

TWT = j Fa bt
XEP:1:v, 4% 2) [, +*¢)dv,.

4. Residue integrals. Let f be in C?(G,7) and put f=f,+f;
+ f, as before. Then by Theorem 1,

fg(x)=l_v11—,|~ f S FOEP: 1y 0)f@)d (e ).

Here wereplace E(P:1:v:a) (a € A*) by its Harish-Chandra expansion :
EP:1:v:a)=e*%e@ > @(sv: a)C(s;v) ved)
SEW

and shift the integral line from & to & 4+ — 15, where 6 ¢ & * such that
2P : a)C( ; v) is holomorphic on F++ —1(6+<*). Then using the
same arguments in [4], we can obtain that

F@=[, a0 o
+ -13
+Z 5 . E ptos@ 27/ 1 Res ply,+*v,)

i=1sEWo Fug=*§¢

X O, +*E) : @CL; s, +*E)) f (8w, +*E))dy,
v .
—2>. 2, 4r°Res Res e *1s@P(y,+*v )C(1; v, + *)* ' f (v, +*v,),

i=1j=1 va=*Eq tva=C{4j
where Wy={se W; sae 2*} and {(*¢,, ;) ; 1<e<V, 1<j<I"} is the set
of intersections of singular hyperplanes of @(v: a)C(1 ; v)*-! which arise
when we ghift the integral line. For simplicity we denote the first
two integrals by f5and I, ; respectwely and the last term by ER,. Then

Ja f2+Z 2, Iy —RR,.

1=18EWo
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Obviously, using the same arguments in the classical Paley-Wiener
theorem on an Euclidean space, we see that f¢ belongs to C2(G, 7).

For each 7, 7 A<j<l”, 1<4<Vl') let us suppose that @(v: a)CA ;v)*-*
has a pole of m,,-th order at v=y,+;; v, € F.,). Here we put

S={D"™(*¢;, GPEP : L:iv,+*v,: -); 0<m<m,;—1,
1<i<lV, 1<j<l),
where
am
OV ba=t¢ 6* o=t

Let {E ,,=Dm®’(*¢,,, Lo)E@P:1: -1 2); 1gpg7} be a maximal line-
arly independent subset of S. Then each element of S can be written
as a linear combination of F,, A<p<y), that is,

Dem(*g, Cij)E(P: 1:.: x)=Zr:1 Am,i,j,pE(p)(x) (xe@, Am,i,j,p eC).
e .

As in [3], we choose &, (A<p<y)eC7(G,7) such that (&, E,,)
=0,, 1<p, ¢<y) and put 4, ;= (h,, &) A<p<y, 1<k<n).

Lemma 6. For f in C7(G,7) we put F=f—37_, (f, E)hey.
Then RR,=0.

This lemma is proved by the same way in [3, I, cf. (4.16)].

In what follows we shall prove that F\;=0. Here we note that
each E(P,: Vo i ve: ®)=(—p, ) *"EP:1:p,+%&:x) A<Li<l) satisfies
the weak inequality on G for v, € &,. Then using the Harish-Chandra
expangsion of the right hand side, we can deduce the first relation in
the following proposition and using the definition of @(v: a) directly
the second one.

Proposition 7. (i)

l
I
iZ=1seZWo Fi= IWl i=1

Do, =2

14

*va—*h
XEP:1:v,+*;: ‘)F‘(Va+*§¢)d’)a"‘zil eZv:V I
where Wi=W —W, and for s ¢ W,
T (@)= f 2o 1 1{ Res ‘u(ua—|—*ya)}@(s(va+*u,,) )

Fua=%¢
X C(8 3 vat "Vl mre, Fu+*60dv,  (a € AY).
(i) For each s W, and 1<i<l there exists a meromorphic func-
tion P on F, such that
Iy (@)=exp {—(o++ —1s*¢) (log (@)}H} (@)  (ac AY),
where

Hy (@)= 257/ =1{ Res st | PP 0ut-*8)

*ug=*§;

W, j‘ Fa
X exp {v/ — sy, (log (@))}dy,.

Then by Corollary 5 and the above relation (i), we see that
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A 154
(+) N Y Bu=—F—3 3 i
and thus,
v
F=F0+F§_Z Z

1=1sEWo
Moreover we obtain the following lemma which was used in [4] with-
out a proof.

Lemma 8. J§,=0 for all se Wjand 1<i<U'.

To prove this lemma it is enough to prove that &(s(v,+*v,): @)
(ae A, v, e F,) is holomorphic at *u,=*¢, for all se Wi and 1<i<V.
This fact is obtained from the definitions of @(v: a) and @,(*v, : *a) for
s € W, such that se¢= —e¢, or —e¢,, and from the relation (x), Proposmon
7 (ii) and the following proposition for s € W; such that sa= —a.

Proposition 9. There exists a function g in C7(G,7) such that
(1) RR,=0, () g,=0, () g(v.+*&)++0 for all 1<i<l, (4) when Pi=0
for se Wiand 1<i<Vl, then J5 ,+0.

Therefore using Lemma 8 and the relation (), we see that F=F,
+F%.  Since F—F% has compact support and F, is real analytic on G,
it is easy to see that FF=F; and F,=0. In particular, since f is an
arbitrary function in C2(G, 7), the following proposition is obtained.

Proposition 10.

ex=2. A, A<k <L),
p=1

5. An analogue of Paley-Wiener theorem. We shall define the
subspace of C(G, ) which will be the set of Fourier transforms of
C=(G,7). Let % be the set of all b=(,)2_,D(B,(.):L®B) in C(G,7)
satisfying the following conditions;

(C1) each g, (1<i<l)and B can be extended to entire holomorphic
functions, which are exponential type, on &< and &° respectively,

(C2) Br)=pl.+*¢) a<i<l, v, eF),

(C3) bk=iA WDomee ro 8 A<k<n),

(C4) DO™(*&, Li)B= Z Aty g, DO (8 ), LB
a<i<l, 1<i<l).

Then our main result can be stated as follows.

Theorem 2. The Fourier transform sets up a bijection between
C2(G, ) and K.

(Pr) As has been seen in §4, it is easy to see that the mapping:
f—~E(f) is injective one of Cy(G, ) to 4. Therefore it remains
to prove the surjectivity. Let 6=(b,);_,®(B)\., DB be in 4 and put
f=E-'(b). Our purpose is to prove that f is contained in C2(G, 7).
Here we define F by F=f—>1_, DO"® (¥, {)Bhy).  Obviously,
E(F) belongs to 4 and thus satisfies the above conditions: (C1)~(C4).
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Then, applying the same arguments as before, we see that F=F%,
particularly, F' has compact support. Therefore f has also compact
support on G. Q.E.D.
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