60. Further Results on the Boundedness and the Attractivity Properties of Nonlinear Second Order Differential Equations

By Sadahisa Sakata*) and Minoru Yamamoto**)
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1981)

1. Introduction. Recently in [2], J. R. Graef and P. W. Spikes discussed the boundedness of solutions of the forced second order nonlinear nonautonomous differential equation
(1) $\quad\left(a(t) x^{\prime}\right)^{\prime}+h\left(t, x, x^{\prime}\right)+q(t) f(x) g\left(x^{\prime}\right)=e\left(t, x, x^{\prime}\right)$.

In [4], we discussed the boundedness of solutions of (1) and the attractivity properties of the equation
(2) $\quad\left(a(t) x^{\prime}\right)^{\prime}+p(t) f_{1}(x) g_{1}\left(x^{\prime}\right) x^{\prime}+q(t) f_{2}(x) g_{2}\left(x^{\prime}\right) x=e\left(t, x, x^{\prime}\right)$
and obtained the results which are strict extensions of ones in [2] and in [1]. The purpose of this paper is to give the proofs of Remarks 2-4 in [4].
2. Theorems and proofs. First, we consider the boundedness of solutions of the equation (1) or an equivalent system of equations

$$
\begin{align*}
& x^{\prime}=y \\
& y^{\prime}=\frac{1}{a(t)}\left\{-a^{\prime}(t) y-h(t, x, y)-q(t) f(x) g(y)+e(t, x, y)\right\} \tag{3}
\end{align*}
$$

under the following assumptions.
$\left(\mathrm{A}_{1}\right) \quad a(t)$ and $q(t)$ are positive C^{1}-functions in $I=[0, \infty)$.
$\left(\mathrm{A}_{2}\right) \quad f(x)$ is a continuous function in R^{1} which satisfies

$$
\int_{0}^{ \pm \infty} f(x) d x=\infty .
$$

$\left(\mathrm{A}_{3}\right) \quad g(y)$ is a continuous, positive function in R^{1}.
$\left(\mathrm{A}_{4}\right) \quad h(t, x, y)$ is a continuous function in $I \times R^{2}$ which satisfies the inequality $y h(t, x, y) \geqq 0$.
$\left(\mathrm{A}_{5}\right) \quad e(t, x, y)$ is a continuous function in $I \times R^{2}$.
In what follows, we shall use the notations $a^{\prime}(t)_{+}=\max \left\{a^{\prime}(t), 0\right\}$ and $a^{\prime}(t)_{-}=\max \left\{-\alpha^{\prime}(t), 0\right\}$. We shall also use

$$
F(x)=\int_{0}^{x} f(u) d u \quad \text { and } \quad G(y)=\int_{0}^{y} \frac{v}{g(v)} d v
$$

Theorem 1. Suppose $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ and the following conditions.
(4) $\quad \int_{0}^{\infty} \frac{\left|a^{\prime}(t)\right|}{a(t)} d t<\infty, \quad \int_{0}^{\infty} \frac{q^{\prime}(t)}{q(t)} d t<\infty$.

[^0](5) $\frac{y^{2}}{g(y)} \leqq M G(y)$ in $|y| \geqq k$ for some $M>0$ and $k \geqq 0$.
(6) There exist continuous, nonnegative functions $r_{1}(t)$ and $r_{2}(t)$ satisfying
$$
|e(t, x, y)| \leqq \frac{a(t)\left|q^{\prime}(t)\right|}{M q(t)}+r_{1}(t)+r_{2}(t)|y|, \quad \int_{0}^{\infty} r_{i}(t) d t<\infty \quad(i=1,2)
$$

Then any solution $x(t)$ of (1) is bounded.
If, in addition, the functions $G(y)$ and $q(t)$ satisfy the condition:
(7) $G(y) \rightarrow \infty$ as $|y| \rightarrow \infty, q(t) \leqq q_{2}$ for some constant q_{2}, then any solution $(x(t), y(t))$ of (3) is bounded.

Remark 1. It follows from (4) that there exist positive constants a_{1}, a_{2} and q_{1} which satisfy $a_{1} \leqq \alpha(t) \leqq \alpha_{2}$ and $q_{1} \leqq q(t)$ in I. The assumption $\left(\mathrm{A}_{3}\right)$ and the condition (5) imply that there exist constants $M^{\prime}>0$ and $m \geqq 0$ such that

$$
\frac{y^{2}}{g(y)} \leqq M^{\prime} G(y), \quad \frac{|y|}{g(y)} \leqq m+M G(y) \quad \text { in } R^{1}
$$

Proof of Theorem 1. Since $\left(\mathrm{A}_{2}\right)$ implies that $F(x) \rightarrow \infty$ as $|x| \rightarrow \infty$, there exists a positive number F_{0} satisfying the inequality $F(x)+F_{0} \geqq 0$ for arbitrary x in R^{1}. Let

$$
\begin{aligned}
V_{1}(t, x, y)= & {\left[\frac{q(t)}{a(t)}\left(F(x)+F_{0}\right)+G(y)+\frac{m}{M}\right] } \\
& \times \exp \left\{-\int_{0}^{t} \frac{a^{\prime}(s)_{-}}{a(s)} d s+2 \int_{0}^{t} \frac{q^{\prime}(s)_{-}}{q(s)} d s\right\} .
\end{aligned}
$$

Differentiating $V_{1}(t) \equiv V_{1}(t, x(t), y(t))$ with respect to t for any solution $(x(t), y(t))$ of (3), then we have

$$
\begin{aligned}
V_{1}^{\prime}(t) \leqq & \left\{\frac{\left|q^{\prime}(t)\right|}{q(t)}+2 \frac{q^{\prime}(t)_{-}}{q(t)}+M^{\prime} \frac{a^{\prime}(t)_{-}}{a(t)}+M \frac{r_{1}(t)}{a(t)}+M^{\prime} \frac{r_{2}(t)}{a(t)}\right\} V_{1}(t) \\
& +\left\{\frac{2 m q^{\prime}(t)_{-}}{M q(t)}+m \frac{r_{1}(t)}{a(t)}\right\} \exp \left\{2 \int_{0}^{t} \frac{q^{\prime}(s)_{-}}{q(s)} d s\right\} \quad \text { for any } t \geqq 0 .
\end{aligned}
$$

Integrating the above inequality from t_{0} to t, and using Gronwall's lemma, we obtain from (4) and (6) that

$$
\begin{aligned}
& V_{1}(t) \leqq {\left[V_{1}\left(t_{0}\right)+\int_{0}^{\infty}\left\{\frac{2 m q^{\prime}(s)_{-}}{M q(s)}+\frac{m}{a_{1}} r_{1}(s)\right\} d s \cdot \exp \left\{2 \int_{0}^{\infty} \frac{q^{\prime}(s)_{-}}{q(s)} d s\right\}\right] } \\
& \times \exp \left[\int_{t_{0}}^{t} \frac{q^{\prime}(s)}{q(s)} d s+\int_{0}^{\infty}\left\{4 \frac{q^{\prime}(s)_{-}}{q(s)}+M^{\prime} \frac{\alpha^{\prime}(s)_{-}}{a(s)}\right.\right. \\
&\left.\left.+\frac{M}{a_{1}} r_{1}(s)+\frac{M^{\prime}}{a_{1}} r_{2}(s)\right\} d s\right]
\end{aligned}
$$

$$
\leqq c_{2} q(t) \quad \text { for } t \geqq t_{0}
$$

Now it follows that for $t \geqq t_{0}$,

$$
F(x(t)) \leqq c_{2} a_{2} \exp \left\{\int_{0}^{\infty} \frac{a^{\prime}(s)_{-}}{a(s)} d s\right\}
$$

and

$$
G(y(t)) \leqq c_{2} q(t) \exp \left\{\int_{0}^{\infty} \frac{a^{\prime}(s)_{-}}{a(s)} d s\right\}
$$

The proof of Theorem 1 is now completed by $\left(\mathrm{A}_{2}\right)$ and (7). Q.E.D.
Corollary 1. Suppose $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$, (6) and the following conditions:
(8) $\quad a^{\prime}(t) \geqq 0, a(t) \leqq a_{2}$ for a constant $a_{2}>0$ and $\int_{0}^{\infty} \frac{q^{\prime}(t)_{-}}{q(t)} d t<\infty$.
(9) There exist constants $M>0$ and $m \geqq 0$ such that

$$
\frac{|y|}{g(y)} \leqq m+M G(y) \quad \text { in } R^{1}
$$

Then any solution $x(t)$ of (1) is bounded.
If, in addition, the condition (7) holds, then any solution $(x(t), y(t))$ of (3) is bounded.

The proof of Corollary 1 is similar to that of Theorem 1 and we shall omit its details.

Next, we consider the attractivity properties of the equation (2) or an equivalent system

$$
\begin{align*}
& x^{\prime}=y \\
& y^{\prime}=\frac{1}{a(t)}\left\{-a^{\prime}(t) y-p(t) f_{1}(x) g_{1}(y) y-q(t) f_{2}(x) g_{2}(y) x+e(t, x, y)\right\} \tag{10}
\end{align*}
$$

under the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{5}\right)$ and the following assumptions.
(A_{6}) $\quad \int_{0}^{\infty} \frac{\left|a^{\prime}(t)\right|}{a(t)} d t<\infty, \quad \int_{0}^{\infty} \frac{\left|q^{\prime}(t)\right|}{q(t)} d t<\infty$.
$\left(\mathrm{A}_{7}\right) \quad p(t)$ is a continuous function in I satisfying $p_{1} \leqq p(t) \leqq p_{2}$ for some positive constants p_{1} and p_{2}.
$\left(\mathrm{A}_{8}\right) \quad f_{1}(x)$ and $f_{2}(x)$ are continuous, positive functions in R^{1} and $f_{2}(x)$ satisfies $\int_{0}^{ \pm \infty} x f_{2}(x) d x=+\infty$.
$\left(\mathrm{A}_{9}\right) \quad g_{1}(y)$ and $g_{2}(y)$ are continuous, positive functions in R^{1} and $g_{2}(y)$ satisfies $\int_{0}^{ \pm \infty} \frac{y}{g_{2}(y)} d y=+\infty$.

Remark 2. If we assume $\int_{0}^{\infty} \frac{q^{\prime}(t)_{-}}{q(t)} d t<\infty$, then the latter of $\left(\mathrm{A}_{6}\right)$ follows from the condition $q(t) \leqq q_{2}$ for $t \in I$.

On the other hand, $\left(\mathrm{A}_{6}\right)$ implies the existence of positive constants a_{1}, a_{2}, q_{1} and q_{2} such that $a_{1} \leqq \alpha(t) \leqq \alpha_{2}$ and $q_{1} \leqq q(t) \leqq q_{2}$ for $t \in I$.

From now on, we shall use the following functions:

$$
\begin{gathered}
F_{1}(x)=\int_{0}^{x} f_{1}(u) d u, \quad F_{2}(x)=\int_{0}^{x} u f_{2}(u) d u, \quad G_{0}(y)=\int_{0}^{y} \frac{v}{g_{2}(v)} d v, \\
G_{1}(y)=\int_{0}^{y} \frac{1}{g_{1}(v)} d v \quad \text { and } \quad G_{2}(y)=L G_{0}(y)-\frac{1}{2}\left\{G_{1}(y)\right\}^{2}
\end{gathered}
$$

where L is a positive constant to be determined later.
Theorem 2. Suppose $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{5}\right)-\left(\mathrm{A}_{9}\right),(6)$ and the following condition.
(11) There exist constants $M>0$ and $k \geqq 0$ such that

$$
\frac{y^{2}}{g_{2}(y)} \leqq M G_{0}(y) \quad \text { in }|y| \geqq k .
$$

Then every solution of (10) approaches $(0,0)$ as $t \rightarrow \infty$.
Proof of Theorem 2. The boundedness of solutions of (10) is an immediate consequence of Theorem 1, since $\left(\mathrm{A}_{8}\right)$ implies $F_{2}(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$ and since (A_{9}) implies $G_{0}(y) \rightarrow+\infty$ as $|y| \rightarrow \infty$. Let $(x(t), y(t))$ be a solution defined in $\left[t_{0}, \infty\right)$ of (10), then there exists a constant K such that $|x(t)|+|y(t)| \leqq K$ for $t \geqq t_{0}$. It follows from $\left(\mathrm{A}_{8}\right)$ and $\left(\mathrm{A}_{9}\right)$ that there exist positive constants $c_{1}, c_{2}, \cdots, c_{8}$ such that
(12) $\quad c_{1} \leqq f_{1}(x) \leqq c_{2}^{\prime}, \quad c_{3} \leqq f_{2}(x) \leqq c_{4}, \quad c_{5} \leqq g_{1}(y) \leqq c_{6} \quad$ and $\quad c_{7} \leqq g_{2}(y) \leqq c_{8}$ in $|x|+|y| \leqq K$. Let

$$
V_{2}(t, x, y)=\frac{1}{2 q(t)}\left(F_{1}(x)+G_{1}(y)\right)^{2}+\frac{L}{a(t)} F_{2}(x)+\frac{1}{q(t)} G_{2}(y)
$$

for $(t, x, y) \in I \times R^{2}$, then we have for $t \in I,|x|+|y| \leqq K$

$$
V_{2}(t, x, y) \geqq \frac{L}{a(t)} F_{2}(x)+\frac{1}{q(t)} G_{2}(y) \geqq \frac{c_{3} L}{2 a_{2}} x^{2}+\frac{1}{2 q_{2}}\left(\frac{L}{c_{8}}-\frac{1}{c_{5}^{2}}\right) y^{2}
$$

and

$$
\begin{aligned}
V_{2}(t, x, y) & =\frac{1}{2 q(t)}\left\{F_{1}(x)^{2}+2 F_{1}(x) G_{1}(y)\right\}+\frac{L}{a(t)} F_{2}(x)+\frac{1}{q(t)} G_{0}(y) \\
& \leqq\left(\frac{c_{2}^{2}}{2 q_{1}}+\frac{c_{2}}{2 q_{1} c_{5}}+\frac{c_{4} L}{2 a_{1}}\right) x^{2}+\left(\frac{c_{2}}{2 q_{1} c_{5}}+\frac{L}{2 q_{1} c_{7}}\right) y^{2} .
\end{aligned}
$$

Differentiating $V_{2}(t)=V_{2}(t, x(t), y(t))$ with respect to t, we obtain

$$
\begin{aligned}
V_{2}^{\prime}(t) \leqq & \frac{\left|q^{\prime}(t)\right|}{q(t)}\left\{\frac{1}{2 q(t)}\left(F_{1}(x)+G_{1}(y)\right)^{2}+\frac{1}{q(t)}\left|G_{2}(y)\right|\right\}+\frac{\left|a^{\prime}(t)\right|}{a(t)}\left\{\frac{\left|y F_{1}(x)\right|}{q(t) g_{1}(y)}\right. \\
& \left.+\frac{L}{a(t)} F_{2}(x)+\frac{L y^{2}}{q(t) g_{2}(y)}\right\}+\left(\frac{\left|q^{\prime}(t)\right|}{M q(t)^{2}}+\frac{r_{1}(t)}{a(t) q(t)}\right) \cdot\left(\frac{\left|F_{1}(x)\right|}{g_{1}(y)}\right. \\
& \left.+\frac{L|y|}{g_{2}(y)}\right)+\frac{r_{2}(t)}{a(t) q(t)}\left(\frac{\left|y F_{1}(x)\right|}{g_{1}(y)}+\frac{L y^{2}}{g_{2}(y)}\right)+\frac{f_{1}(x)}{q(t)}\left(1+\frac{p(t)}{a(t)}\right)\left|y F_{1}(x)\right| \\
& +\frac{f_{1}(x)}{q(t)} y G_{1}(y)-\frac{f_{2}(x) g_{2}(y)}{a(t) g_{1}(y)} x F_{1}(x)-\frac{L p(t) f_{1}(x) g_{1}(y)}{a(t) q(t) g_{2}(y)} y^{2} .
\end{aligned}
$$

We can choose L so large that $\left(L / c_{8}-1 / c_{5}^{2}\right) / 2 \geqq 1+1 / c_{7}$. Then we get $G_{2}(y) \geqq\left(L / c_{8}-1 / c_{5}^{2}\right) y^{2} / 2 \geqq y^{2}, y^{2} / g_{2}(y) \leqq\left(1 / c_{7}\right) y^{2} \leqq G_{2}(y)$ and $c_{9}\left(x^{2}+y^{2}\right)$ $\leqq V_{2}(t, x, y) \leqq c_{10}\left(x^{2}+y^{2}\right)$ for $t \in I,|x|+|y| \leqq K$, where c_{9} and c_{10} are positive constants. It is clear that $\left|y F_{1}(x)\right| \leqq c_{2}|x y| \leqq\left(c_{2} / 2\right)\left(x^{2}+y^{2}\right), y G_{1}(y)$ $\leqq\left(1 / c_{5}\right) y^{2}, x F_{1}(x) \geqq c_{1} x^{2},\left|y F_{1}(x)\right| / g_{1}(y)+L y^{2} / g_{2}(y) \leqq\left(c_{2} / 2 c_{5}\right)\left(x^{2}+y^{2}\right)$ $+\left(L / c_{7}\right) y^{2} \leqq\left(c_{2} / 2 c_{5}+L / c_{7}\right)\left(x^{2}+y^{2}\right)$ and $\left|F_{1}(x)\right| / g_{1}(y)+L|y| / g_{2}(y) \leqq\left(c_{2} / c_{5}\right.$ $\left.+L / c_{7}\right) K$ in $|x|+|y| \leqq K$. Analogously, we can show that $f_{1}(x) / q(t)$ $(1+p(t) / a(t))\left|y F_{1}(x)\right|+\left(f_{1}(x) / q(t)\right) y G_{1}(y)-\left(f_{2}(x) g_{2}(y) / a(t) g_{1}(y)\right) x F_{1}(x)$ $-\left(L p(t) f_{1}(x) g_{1}(y) / a(t) q(t) g_{2}(y)\right) y^{2} \leqq-c_{11}\left(x^{2}+y^{2}\right)$ in $|x|+|y| \leqq K$ for L large enough, where c_{11} is some positive constant. Thus we have that

$$
V_{2}^{\prime}(t) \leqq\left[-\frac{c_{11}}{c_{10}}+L_{1}\left\{\frac{\left|q^{\prime}(t)\right|}{q(t)}+\frac{\left|a^{\prime}(t)\right|}{a(t)}+r_{2}(t)\right\}\right] V_{2}(t)+L_{2}\left\{\frac{\left|q^{\prime}(t)\right|}{q(t)}+r_{1}(t)\right\}
$$

for some $L_{1}>0$ and $L_{2}>0$.

Now, let

$$
W(t, x, y)=V_{2}(t, x, y) \cdot \exp \left[-L_{1} \int_{0}^{t}\left\{\frac{\left|q^{\prime}(s)\right|}{q(s)}+\frac{\left|\alpha^{\prime}(s)\right|}{a(s)}+r_{2}(s)\right\} d s\right]
$$

then we obtain

$$
c_{9} \exp \left[-L_{1} \int_{0}^{\infty}\left\{\frac{\left|q^{\prime}(s)\right|}{q(s)}+\frac{\left|a^{\prime}(s)\right|}{a(s)}+r_{2}(s)\right\} d s\right]\left(x^{2}+y^{2}\right) \leqq W(t, x, y)
$$

for $t \in I,|x|+|y| \leqq K$ and also

$$
W^{\prime}(t) \leqq-\frac{c_{11}}{c_{10}} W(t)+L_{2}\left\{\frac{\left|q^{\prime}(t)\right|}{q(t)}+r_{1}(t)\right\},
$$

where $W(t)=W(t, x(t), y(t))$. The following Lemma completes the proof of Theorem 2.
Q.E.D.

Lemma 1. Consider a system of differential equations
(S) $\quad x^{\prime}=f(t, x)$, where $f(t, x)$ is continuous in $I \times D, D=\left\{x \in R^{2} \mid\|x\|\right.$ $\leqq H\}, H>0$ and $\|\cdot\|$ is the Euclidean norm. If there exists a Liapunov function $U(t, x)$ defined in $I \times D$ such that
(i) $U(t, x)$ is continuously differentiable in $I \times D$,
(ii) $c\|x\|^{2} \leqq U(t, x)$, where c is a positive constant,
(iii) $U_{(s)}^{\prime}(t, x) \leqq-\lambda U(t, x)+r(t)$, where λ is a positive constant and $r(t)$ is a continuous, nonnegative function satisfying $\int_{0}^{\infty} r(t) d t<\infty$, then every solution of (S) which defined in the future in D, approaches the origin as $t \rightarrow \infty$.

The proof is given by the variation of constant formula.
Theorem 3. Suppose $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{5}\right)-\left(\mathrm{A}_{9}\right)$, (11) and the following:
(13) $f_{2}(x)$ and $g_{2}(y)$ have positive lower bounds, that is $f_{2}(x) \geqq \varepsilon>0$ in R^{1} and $g_{2}(y) \geqq \delta>0$ in R^{1}.
(14) There exist continuous, nonnegative functions $r_{1}(t), r_{2}(t)$ such that

$$
|e(t, x, y)| \leqq \frac{a(t)\left|q^{\prime}(t)\right|}{M q(t)}+r_{1}(t)+r_{2}(t)\{|x|+|y|\}, \quad \int_{0}^{\infty} r_{i}(t) d t<\infty \quad(i=1,2) .
$$

Then every solution of (10) approaches $(0,0)$ as $t \rightarrow \infty$.
Proof of Theorem 3. To show the boundedness of solutions, let

$$
V_{3}(t, x, y)=\left\{\frac{q(t)}{a(t)} \boldsymbol{F}_{2}(x)+G_{0}(y)+1\right\} \exp \left[-\int_{0}^{t}\left\{\frac{\left|a^{\prime}(s)\right|}{a(s)}+\frac{\left|q^{\prime}(s)\right|}{q(s)}\right\} d s\right] .
$$

Then we have

$$
\begin{aligned}
V_{3}^{\prime}(t) \leqq & {\left[M^{\prime}\left\{\frac{\left|a^{\prime}(t)\right|}{a(t)}+\frac{r_{2}(t)}{a(t)}\right\} G_{0}(y)+\sqrt{\frac{M^{\prime}}{\delta}}\left\{\frac{\left|q^{\prime}(t)\right|}{M q(t)}+\frac{r_{1}(t)}{a(t)}\right\} \sqrt{G_{0}(y)}\right.} \\
& \left.+\sqrt{\frac{2 M^{\prime}}{\varepsilon \delta}} \cdot \frac{r_{2}(t)}{a(t)} \cdot \sqrt{F_{2}(x) G_{0}(y)}\right] \exp \left[-\int_{0}^{t}\left\{\frac{\left|a^{\prime}(s)\right|}{a(s)}+\frac{\left|q^{\prime}(s)\right|}{q(s)}\right\} d s\right] \\
\leqq & L_{1}\left\{\frac{\left|\alpha^{\prime}(t)\right|}{a(t)}+\frac{\left|q^{\prime}(t)\right|}{q(t)}+r_{1}(t)+r_{2}(t)\right\} V_{3}(t) \quad \text { for some } L_{1}>0 .
\end{aligned}
$$

The above estimates are valid, since (11) and (13) imply that

$$
\begin{aligned}
& \quad \frac{y^{2}}{g_{2}(y)} \leqq M^{\prime} G_{0}(y), \quad \frac{|y|}{g_{2}(y)} \leqq \sqrt{\frac{M^{\prime}}{\delta} G_{0}(y)} \leqq \frac{1}{2} \sqrt{\frac{M^{\prime}}{\delta}} \cdot\left(G_{0}(y)+1\right), \\
&|x| \leqq \sqrt{\frac{2}{\varepsilon} F_{2}(x)} \quad \text { and } \quad \sqrt{\frac{q(t)}{a(t)} F_{2}(x) \cdot G_{0}(y)} \leqq \frac{1}{2}\left\{\frac{q(t)}{a(t)} F_{2}(x)+G_{0}(y)\right\} .
\end{aligned}
$$

By Gronwall's lemma, we obtain

$$
\begin{aligned}
& V_{3}(t) \leqq V_{3}\left(t_{0}\right) \exp \left[L_{1} \int_{0}^{\infty}\left\{\frac{\left|a^{\prime}(s)\right|}{a(s)}+\frac{\left|q^{\prime}(s)\right|}{q(s)} r_{1}(s)+r_{2}(s)\right\} d s\right]=L_{2} \\
& \text { for } t \geqq t_{0} \geqq 0 .
\end{aligned}
$$

This implies that

$$
F_{2}(x(t)) \leqq \frac{a_{2} L_{2}}{q_{1}} \exp \left[\int_{0}^{\infty}\left\{\frac{\left|a^{\prime}(s)\right|}{a(s)}+\frac{\left|q^{\prime}(s)\right|}{q(s)}\right\} d s\right]
$$

and

$$
G_{0}(y(t)) \leqq L_{2} \exp \left[\int_{0}^{\infty}\left\{\frac{\left|a^{\prime}(s)\right|}{a(s)}+\frac{\left|q^{\prime}(s)\right|}{q(s)}\right\} d s\right] \quad \text { for } t \geqq t_{0} \geqq 0 .
$$

Therefore we conclude from $\left(\mathrm{A}_{8}\right)$ and $\left(\mathrm{A}_{9}\right)$ that every solution of (10) is bounded.

Next, let $(x(t), y(t))$ be a solution defined in $\left[t_{0}, \infty\right)$ of (10) which satisfies $|x(t)|+|y(t)| \leqq K$ in $\left[t_{0}, \infty\right)$ for some $K>0$. We use the same function $V_{2}(t, x, y)$ as that in the proof of Theorem 2. Then we have

$$
V_{2}^{\prime} \leqq\left[-\frac{c_{11}}{c_{10}}+L_{3}\left\{\frac{\left|q^{\prime}(t)\right|}{q(t)}+\frac{\left|a^{\prime}(t)\right|}{a(t)}+r_{2}(t)\right\}\right] V_{2}(t)+L_{2}\left\{\frac{\left|q^{\prime}(t)\right|}{q(t)}+r_{1}(t)\right\}
$$

where L_{1}, L_{2}, L_{3} are some positive constants. We can get the conclusion of Theorem 3 along the analogous way as the proof of Theorem 2.
Q.E.D.

Corollary 2. Suppose $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{5}\right)-\left(\mathrm{A}_{9}\right)$, (14) and the following:

$$
\begin{equation*}
\frac{|y|}{g_{2}(y)} \leqq M \sqrt{G_{0}(y)}, \quad g_{2}(y) \leqq \gamma \quad \text { in } R^{1} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
f_{2}(x) \geqq \varepsilon>0 \quad \text { in } R^{1} \tag{16}
\end{equation*}
$$

Then every solution of (10) approaches $(0,0)$ as $t \rightarrow \infty$.

References

[1] T. A. Burton: On the equation $x^{\prime \prime}+f(x) h\left(x^{\prime}\right) x^{\prime}+g(x)=e(t)$. Ann. Math. Pura Appl., 85, 277-285 (1970).
[2] J. R. Graef and P. W. Spikes: Boundedness and convergence to zero of solutions of a forced second-order nonlinear differential equation. J. Math. Anal. Appl., 62, 295-309 (1978).
[3] J. W. Heidel: A Liapunov function for a generalized Liénard equation. ibid., 39, 192-197 (1972).
[4] S. Sakata and M. Yamamoto: On the boundedness and the attractivity properties of nonlinear second order differential equations. Proc. Japan Acad., 57A, 111-116 (1981).

[^0]: *) Osaka University.
 **) Nara Medical University.

