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Further Results on the Boundedness and the Attractivity
Properties o Nonlinear Second Order
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By Sadahisa SAKATA*) and Minoru YAMAMOTO**)

(Communicated by K6saku YOSlDA, M. . A., May 12, 1981)

1. Introduction. Recently in [2], J. R. Graef and P.W. Spikes
discussed the boundedness o solutions of the forced second order non-
linear nonautonomous differential equation

( 1 (a(t)x’)’/ h(t, x, x’)/ q(t)f(x)g(x’)= e(t, x, x’).
In [4], we discussed the boundedness of solutions of (1) and the attrac-
tivity properties of the equation

( 2 ) (a(t)x’)’+ p(t)f(x)g(x’)x’+ q(t)f(x)g(x’)x= e(t, x, x’)
and obtained the results which are strict extensions of ones in [2] and
in [1]. The purpose of this paper is to give the proofs of Remarks
2-4 in [4].

2. Theorems and proofs. First, we consider the boundedness
of solutions of the equation (1) or an equivalent system of equations

X--y
(3) y,= 1a(t)..{-a’(t)y-h(t, x, y)-q(t)f(x)g(y)+e(t, x, y)}

under the ollowing assumptions.
(A1) a(t) and q(t) are positive Cl-functions in I= [0, c).
(A2) f(x) is a continuous function in R which satisfies: f(x),dx- c.

(A3) g(y) is a continuous, positive function in R.
(A4) h(t, x, y) is a continuous function in I R which satisfies the

inequality yh(t, x, y)= O.
(A) e(t, x, y) is a continuous function in I R.

In wht ollows, we shall use the notations a’(t)/=max {a’(t), 0} and
a’(t)_ =max {-a’(t), 0}. We shall also use

F(x) :f(u)du and G(y)=: v -dr.
g(v)

Theorem 1. Suppose (A)-(A) and the following conditions.

( 4 ) a’(t)l dt< c, dt< c.
a(t) q(t)

*) Osaka University.
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y2 <MG(y) in lYlk for some MO and k=O.( 5 )
g(Y)

( 6 ) There exist continuous, nonnegative functions rl(t) and r2(t),
satisfying

le(t, x, y)I< a(t)Iq’(t)l +r(t)+r.(t) [Yl, r(t)dt< (i= 1, 2).
Mq(t)

Then any solution x(t) of (1) is bounded.
If, in addition, the functions G(y) and q(t) satisfy the condition"
(7) G(y)--c as [y[-, q(t)=q for some constant q,

then any solution (x(t), y(t)) of (3) is bounded.
Remark 1. It ollows rom (4) that there exist positive constants.

al, a. and q which satisfy a ga(t) <=a and q q(t) in I. The assump-
tion (A) and the condition (5) imply that there exist constants M’>0,
and m>_ 0 such that

Y ._M’G(y), ]Yl m/MG(y) in R1.
g(y) g(y)

Proof of Theorem 1. Since (A) implies that F(x)--oo as Ixl--o,
there exists a positive number F0 satisfying the inequality F(x) + Fo>= 0
for arbitrary x in R. Let

[ q(t) m ]V(t, x, y)= [-a-() (F(x) /Fo) / G(y) +---
exp {--o.a’(s)-..-ds/2 :.q’(s)_ ds}.a(s) q(s)

Differentiating V(t)--V(t, x(t), y(t)) with respect to t for any solution
(x(t), y(t)) o (3), then we have

y/l(t) < { Iq’(t)
/ 2 q’(t)_ +M, a’(t)_ r,(t) M’ r(t) }q(t- q(t) -) /M + V(t)

a(t) a(t)

+- 2mq’(t)_ +m r(t)
Mq(t) -(t) J

exp {2 : q’(S)q(s) ds} :for any t>_0.

Integrating the above inequality rom to to t, and using Gronwall’s
lemma, we obtain rom (4) and (6) that

V(t)=[V(t)+; ( 2mq’(s)-Mq(s) +--r(s)m }ds. exp 2 f; q’(s)_ ds}]q(s)

exp ds+ 4 +
to q(s) q(s) a(s)

+ M r()+ ()

G c.q(t) for t >= to.
Now it ollows that or t>= to,

F(x(t)) c.a exp { a’(s)_ ds}
and
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G(y(t))< c.q(t) exp { a’(s)_

The proo of Theorem 1 is now completed by (A) and (7). Q.E.D.
Corollary 1. Suppose (A)-(A), (6) and the following conditions"

( 8 ) a’(t)> O, a(t) <a for a constant a>0 and [ q’(t)_ dt< c.
q(t)

( 9 ) There exist constants M0 and m>=O such that
[Yl <_m+MG(y) in R.
g(y)

Then any solution x(t) of (1) is bounded.
If, in addition, the condition (7) holds, then any solution (x(t), y(t))

of (3) is bounded.
The proo oi Corollary 1 is similar to that o Theorem 1 and we

shall omit its details.
Next, we consider the attractivity properties of the equation (2)

or an equivalent system
X--y

(10) y,__ 1 a’(t)y p(t)f(x)g(y)y q(t)f.(x)g.(y)x + e(t x, y)}h(t) {-
under the assumptions (A), (A) and the following assumptions.

(A) ; ]a’(t)! dt<c, ; Iq’(t),
a(t) q(t)

(A) p(t) is a continuous function in I satisfying p<=p(t) gp. for
some positive constants p and p.

(As) f(x) and f.(x) are continuous, positive functions in R and

f(x) satisfies xf(x)dx= + c.

(A) g(y) and g.(y) are continuous, positive functions in R and

g.(y) satisfies
y dy= + c.

g.(Y)
q’(t)_ dr< then the latter of (A)Remark 2. I we assume )

follows rom the condition q(t)<=q for t e I.
On the other hand, (A) implies the existence of positive constants

a, a, q and q. such that a=a(t) =a and q q(t) q. or t e I.
From now on, we shall use the ollowing tunctions

F(x)=f(u)du, F.(x)=fuf(u)du, Go(y)= v dv,
g.(v)

G(y)=f: 1---dr and G(y)=LGo(y)-{G(y)}g(v)
where L is a positive constant to be determined later.

Theorem 2. Suppose (A), (A)-(A), (6) and the following condition.
(11) There exist constants MO and kO such that
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y2 _MGo(Y) in [yl=k.
g2(Y)

Then every solution of (10) approaches (0, O) as t--.oo.
Proof of Theorem 2. The boundedness of solutions of (10) is an

immediate consequence of Theorem 1, since (As) implies F(x)--. + oo as
]xl-+o and since (A9) implies Go(y)+ oo as lyl-.oo. Let (x(t), y(t)) be
solution defined in [to, oo) of (10), then there exists a constant K such

that [x(t)l+ly(t)lGK for tto. It follows from (A) and (A9) that there
exist positive constants c, c., ..., c such that

(12) clfl(x)Gci, c3Gf2(x)Gc4, cs=g(y)Gc and cGg2(y)_Gc8
in IxI+IylGK. Let

1 .-(Fl(X) + GI(y))2+ L F.(x) + 1Y(t, x, y)=
2q(t) -a-(-G(y)

or (t, x, y) e I R, then we have for t

V2(t x, y)> L F2(x)+ 1 G2(y)> c3L xq_L 1 ( L l__y
 (t-U

and
L F.(x) + 11 {Fl(x).+2F(x)G(y)} +__a tyG(y)y2(t, x, y)= 2q(t)

\ 2q 2qC 2a / 2qc + 2q c lye"
Differentiating V(t)= V(t, x(t), y(t)) with respect to t, we obtain

{ 1 [G(y),} +_,a’(t),{[yF(x).V(t)G ) (F(x)+G(Y))+q a(t) q(t)g(y)
[q’+ q(t)g(y) Mq(t) a(t)q(t) g(y)

L ]y] ) r(t) ( yF,(x)[ + Ly + f(x) (1+ p(t)+ +()q(t- g(y) / /tyFI(X)]

+ vG(v)- G()(v)
(t)g() (t)q(t)()

We can choose g so large ha (L/e-l/e)/2l+l/e. Then we
G() (/e- 1/e)/2 , g/g() (1/e) G(g) and e(z + )
g(t, z, )e0(+) for t I, l+llg, where e and e0 are osi-
ive eonsants. Ig iS dear tha P()e l(e/)(m+V),
G (1/c)Y, xF(x) cx, lyF(x)]/g(y) + Ly/g(y) G (c/2c)(x + y)
+(L/c)yG(c/2c+L/cO(x+y) and [F(x)]/g(y) + L [y[/g(y) (c/c
+L/cOK in Ix]+IyIGK. Analogously, we can show that f(x)/q(t)
(1 + p(t)/a(t)) ]yF,(x)[ + (f(x)/q(t))yG(y) (f(x) g(y)/a(t) g(y))xF (x)
--(Lp(t)f(x)g(y)/a(t)q(t)g(y))yG--c(x+y) in x]+y]GK for L
large enough, where c is some positive constant. Thus we have that

Co q(t) a(t) q(t)
for some LO and L)O.
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Now, let

W(t, x, y)= V(t, x, y). exp [-L : { ]q’(s)] .+ ]a’(s)+r(s)}ds],q(s) a(s)
then we obtain

c exp L, q’(s)+ +r(s) ds (x + y) < W(t, x, y)
q(s) a(s)

for t e I, ]x]+]ygK and also

c0 q(t)
where W(t)= W(t, x(t), y(t)). The following Lemma completes the
proo o Theorem 2. Q.E.D.

Lemma 1. Consider a system of differential equations
(S) x’= f(t, x), where f(t, x) is continuous in I D, D= {x e R llxll

H}, HO and ]. is the Euclidean norm. If there exists a Liapunov
function U(t, x) defined in I D such that

) U(t, x) is continuously differentiable in I D,
(ii) c[[x]]gU(t,x), where c is a positive constant,
(iii) U’()(t, x)-2U(t, x)+r(t), where is a positive constant and

r(t) is a continuous, nonnegative function satis[ying [r(t)dt<
then every solution of (S) which defined in the future in D, approaches
the origin as t.

The proof is given by the variation o constant ormula.
Theorem . Suppose (A), (A)-(A), (11) and the following:
(13) f(x) and g(y) have positive lower bounds, that is

f(x) 0 in R and g(y) 0 in R.
(14) There exist continuous, nonnegative functions r(t),r(t)

such that

]e(t,x y)l< a(t) q’(t)l +r(t)+r(t){ix]+ly]} r(t)dt< (i=1,2).
Mq(t)

Then every solution of (10) approaches (0, O) as t.
Proof of Theorem 3. To show the boundedness of solutions, let

V(t,x y)={ q(t).F(x)+Go(y)+l} exp [_ { ,a’(s), + [q’(s), }ds].a(t) as q(s)

Then we have

(y)
a(t) a(t Mq(t) a(t)

8
a(t - a(s)

L[_(t) ]a’(t) + -]q’(t)]+r(t)+r(t)} or some L,0.

The above estimates are valid, since (11) and (13) imply that
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M’Go(y), IYl <
g2(Y) g2(Y) --G(y)=-w - (G0(y)+l),

Ix I< F2(x) and q(t) F2(x) Go(y) < 1 q(t) F(x)+ Go(y)a(t) l(
By Gronwall’s lemma, we obtain

V(t)V(to) exp [L I: { a’(s) + q’(s), r(s)+r(s)}ds]= La(s) q(s)
or t t0 0.

This implies that

F(x(t)) aL_
ql

and

exp [:(la’(s)a(s)+
lq’(s)l }ds]q(s)

Go(y(t))<Lexp [: la’(s)l_/ Iq’(s), }ds] or t>to>O.
[ a(s) q(s)

Therefore we conclude rom (A) and (A) that every solution o (10)
is bounded.

Next, let (x(t), y(t))be a solution defined in [to, c) of (10) which
satisfies Ix(t)l/ly(t)l=K in [to, c) or some K0. We use the same
function V(t, x, y) as that in the proo o Theorem 2. Then we have

q’(t)l la’(t)l r(t)} L

where L, L, L are some positive constants. We can get the conclu-
sion o Theorem 3 along the analogous way as the proo o Theorem
2. Q.E.D.

Corollary 2. Suppose (As), (As)-(Ag), (14) and the following:

(15) lY! _Mv/Go(y), g.(y)=y in R.
g2(y)

(16) f(x) >= 0 in R.
Then every solution of (10) approaches (0, O) as t-+c.
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