56. A Note on the Fundamental Theorem of Calculus

By Kôsaku Yosida, M. J. A.

(Communicated May 12, 1981)

The entitled theorem is sometimes called as

The criteria for monotonicity. It reads: Let y = f(x) be a real-valued continuous function defined on a closed interval [a, b]. If the derivative f'(x) exists and >0 for all x of the open interval (a, b), then, for all c, d with a < c < d < b, we must have f(c) < f(d).

To this theorem, the present author should like to propose a proof which does not appeal to the *Mean Value Theorem* (cf. L. Bers [1], 223–224 and P. Lax-S. Burstein-A. Lax [2], 103) and which also gives the proof of the *Intermediate Value Theorem*.

Proof. Assume the contrary and let $f(c) \ge f(d)$. Since f'(c) > 0, there exists e with c < e < d and f(e) > f(d). Let m be any number satisfying f(e) > m > f(d). Consider the graph G(f; e, d) of f starting from the point $\{e, f(e)\}$ and ranging towards the point $\{d, f(d)\}$. Take the first encounter point $\{g, f(g)\}$ of the graph G(f; e, d) with the line g = m. The existence of such point $\{g, f(g)\}$ is proved as follows.

Let S be the set of all points $x_1 \in [e,d]$ satisfying the condition that f(x) > m for all $x \in [e,x_1]$. Let x_{∞} be the least upper bound of the set S. Then $x_{\infty} \in S$. If otherwise, $f(x_{\infty}) > m$ so that, by the continuity of f, f(x) > m for all x sufficiently close to x_{∞} . Hence there should exist a point $x_1 \in S$ which is to the right of x_{∞} . This is absurd. Hence $x_{\infty} \in S$ is a limit point of the set S and so $f(x_{\infty}) = m$. Therefore, $e < x_{\infty} < d$ and we can take x_{∞} for g.

Since $\{g, f(g)\}$ is the first encounter point of the graph G(f; e, d) with the line y=m, we must have f(x)>m for all x with $e \le x < g$. This implies, by f(g)=m, that $f'(g) \le 0$, contrary to the hypothesis f'(x)>0.

Remark. The "first encounter argument" is also applicable to the proof of the fact that, for a convex function y = f(x) with f''(x) > 0, the graph G(f; a, b) has no point which lies on the upper side of the line segment (the secant) connecting two points $\{a, f(a)\}$ and $\{b, f(b)\}$. We omit the details.

References

^[1] L. Bers: Calculus. Holt, Rinehart and Winston Inc. (1969).

^[2] P. Lax, S. Burstein, and A. Lax: Calculus with Applications and Computing, Volume I. Springer-Verlag (1976).