49. On the Mean Value Property of Harmonic and Complex Polynomials

By Shigeru Haruki
Okayama University of Science
(Communicated by Kôsaku Yosida, m. J. A., April 13, 1981)

1. Introduction. Throughout this note K denotes either the field of complex numbers C or the field of real numbers R. Let n be a fixed integer >2, and θ denote the number $\exp (2 \pi i / n)$.

In 1935 S. Kakutani and M. Nagumo [1], and independently, in 1936 J. L. Walsh [3] proved the following theorems concerning the mean value property (MVP) of harmonic and complex polynomials.

Theorem A (Kakutani-Nagumo-Walsh). If $f: C \rightarrow R$ is continuous, the MVP

$$
\sum_{\nu=0}^{n-1} f\left(x+\theta^{\nu} y\right)=n f(x)
$$

holds for all $x, y \in C$ if, and only if, $f(x)$ is a harmonic polynomial of degree at most $n-1$.

Theorem B. An entire function f satisfies the MVP for all $x, y \in C$ if and only if f is given by a complex polynomial of degree at most $n-1$.

The above theorems are direct or indirect motivations for the generalizations and applications of various papers.

The main purpose of this note is to inform some more generalizations of Theorems A and B from the standpoint of the theory of finite difference functional equations.
2. The general solution. Definition. A mapping $Q^{p}: C \rightarrow K$ is called a homogeneous polynomial of degree p if and only if there exists a p-additive symmetrical mapping $Q_{p}: C^{p} \rightarrow K$; that is, $Q_{p}\left(x_{1}, \cdots, x_{p}\right)$ $=Q_{p}\left(x_{i_{1}}, \cdots, x_{i_{p}}\right)$ for all $x_{1}, \cdots, x_{p} \in C$ and for all permutations $\left(i_{1}\right.$, \cdots, i_{p}) of the sequence $(1, \cdots, p)$ and Q_{p} is an additive function in each $x_{q}, 1 \leq q \leq p$, such that $Q^{p}(x)=Q_{p}(x, \cdots, x)$ for all $x \in C$. We say that Q_{p} is associated with Q^{p} or that Q_{p} generates Q^{p}.

We agree that for $p=0$ a homogeneous polynomial of degree zero is a constant.

Definition. Let β be any non-negative integer. If $f: C \rightarrow K$ is a finite sum $f=Q^{0}+Q^{1}+\cdots+Q^{\beta}$ of homogeneous polynomials, then f is called a generalized polynomial of degree at most β.

Notation. Let $Q_{(n-r, r)}(x ; y)$ denote the value of $Q_{n}\left(x_{1}, \cdots, x_{n}\right)$ for $x_{i}=x, \quad i=1, \cdots, n-r$ and $x_{i}=y, \quad i=n-r+1, \cdots, n$. In particular
$Q_{(0, n)}(y ; x)=Q_{(n, 0)}(x ; y)=Q^{n}(x)$.
Theorem 1. A function $f: C \rightarrow K$ satisfies the MVP for all $x, y \in C$ if and only if there exists a generalized polynomial of degree at most $n-1$ such that
(*) $\quad f(x)=Q^{0}+Q^{1}(x)+\cdots+Q^{n-1}(x) \quad$ for all $x \in C$, where the homogeneous polynomials $Q^{p}: C \rightarrow K$ for $p=1, \cdots, n-1$ must satisfy the equation

$$
\sum_{\nu=0}^{n-1} \sum_{\delta=1}^{n-1} \sum_{\sigma=1}^{\delta}\binom{\delta}{\sigma} Q_{(\delta-\sigma, \sigma)}\left(x ; 6^{\nu} y\right)=0 \quad \text { for all } x, y \in C .
$$

For $f: C \rightarrow K$ and for $y \in C$ we define the usual difference operator Δ_{y} by $\Delta_{y} f(x)=f(x+y)-f(x)$. For $y_{i} \in C, i=1,2, \cdots, n$, we inductively define the n-th order difference operator $\Delta_{y_{1} \cdots y_{n}}^{n}$ by

$$
\Delta_{y_{1} \cdots y_{n}}^{n} f(x)=\left(\Delta_{y_{1} \cdots y_{n-1}}^{n-1}\right) \Delta_{y_{n}} f(x) .
$$

Notice that the ring of operators generated by this family of operators is commutative and distributive.

The proof of Theorem 1 is based on Lemma 1 and Fundamental Theorem below. Let G and H be additive Abelian groups. Let S be any field and G, H be unital S-modules. Let $f: G \rightarrow H$ satisfy the equation

$$
\sum_{i=0}^{n} \gamma_{i} f\left(x+\alpha_{i} y\right)=0 \quad \text { for all } x, y \in G
$$

where $n>2$ is a given integer, $\gamma_{i} \neq 0, \alpha_{i} \neq 0\left(=\alpha_{0}\right)$ for $i=0,1, \cdots, n$ are fixed elements in S and $\alpha_{j} \neq \alpha_{k}$ for $j \neq k$. The above equation is a generalization of the well-known difference functional equation

$$
\Delta_{y}^{n} f(x)=0, \quad \text { i.e., } \sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} f(x+i y)=0
$$

for all $x, y \in G$. More generally we have
Lemma 1. Let $f_{i}: G \rightarrow H$ for $i=0,1, \cdots, n$ satisfy the equation

$$
\begin{equation*}
\sum_{i=0}^{n} f_{i}\left(x+\alpha_{i} y\right)=0 \quad \text { for all } x, y \in G, \tag{**}
\end{equation*}
$$

where $\alpha_{i} \neq 0$ for $i=0,1, \cdots, n$ are fixed elements in S and $\alpha_{j} \neq \alpha_{k}$ for j $\neq k$. Then equation (**) implies

$$
\Delta_{u}^{n} f_{i}(x)=0
$$

for each $i=0,1, \cdots, n$ and for all $x, u \in G$.
The following general theorem of S. Mazur and W. Orlicz [2] in the theory of finite difference functional equations plays a fundamental role in our study.

Fundamental Theorem. Let M, N be fixed integers ≥ 0. Let X be an Abelian additive semigroup with unit element 0 and $m x=x+x$ $+\cdots+x$ for integer $m>0, x \in X$, and let F be an Abelian group and $m y=y+y+\cdots+y$ for integer $m>0, y \in F$. Let $f: X \rightarrow F$. The following three statements are equivalent if $M^{N} \neq 0$ in F :
(a) $\Delta_{y}^{N+1} f(x)=0 \quad$ for all $x, y \in X$,
(b) $\Delta_{y_{1} \cdots y_{N+1}}^{N+1} f(x)=0 \quad$ for all $x, y_{1}, \cdots, y_{N+1} \in X$,
(c) f is a generalized polynomial of degree at most N, that is, $f(x)=Q^{0}+Q^{1}(x)+\cdots+Q^{N}(x)$ for all $x \in X$, where $Q^{p}: X \rightarrow F$ for $p=0,1$, \cdots, N are homogeneous polynomials.
3. Solutions bounded on a set of positive measure. Theorem 2. If a function $f: C \rightarrow R$ satisfies the MVP for all $x, y \in C$, then (*) holds for all $x \in C$, where $Q^{p}: C \rightarrow R$ for $p=0,1, \cdots, n-1$. Moreover, f is bounded on a set of positive Lebesgue measure if and only if f is given by a harmonic polynomial of degree at most $n-1$.

Theorem 3. If a function $f: C \rightarrow C$ satisfies the MVP for all $x, y \in C$, then (*) holds for all $x \in C$. Further, f is bounded on a set of positive Lebesgue measure if and only if f is a complex polynomial of the form

$$
f(x)=\sum_{s=0}^{n-1} a_{0, s} x^{s}+\sum_{r=1}^{n-1} a_{r, r} \bar{x}^{r},
$$

where \bar{x} denotes the conjugate of x.
The detailed proofs of the above results stated in this note will be published in the Pacific J. Math.

References

[1] S. Kakutani and M. Nagamo: About the functional equation $\sum_{\nu=0}^{n-1} f\left(z+e^{(2 \nu \pi / n) i \xi)}\right.$ $=n f(z)$. Zenkoku Shijô Danwakai, 66, 10-12 (1935) (in Japanese).
[2] S. Mazur and W. Orlicz: Grundlegende Eigenschaften der polynomischen Operationen. Studia Math., 5, 50-68 (1934).
[3] J. L. Walsh: A mean value theorem for polynomials and harmonic polynomials. Bull. Amer. Math. Soc., 42, 923-930 (1936).

