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1. Introduction and the assumptions. The present paper is con-
cerned with the two problems. The first problem is the Hopf bifur-
cation problem for a semilinear evolution equation in a real Banach
space X (with norm II) with a real parameter 2;
(E) du/dt=Lu+N(u, ) tO.
The second one is to determine local -limit set o1 a solution u(t, x,,)
of a semilinear evolution equation in X;
(E’) du/dt=Lu+N(u) tO
with an initial value: u(O)=x0. Here we assume

Assumption 1. L is the generator of the holomorphic semigroup,
having _+i as isolated eigenvalues with the algebraic multiplicity one
and the other spectrum a’(L) of L being properly contained in the left
hal-(complex)plane

sup Re Z-c
(c" a positive constant).

Assumption 2. N(x, 2) is a C3-mapping o a neighborhood of 0 in
XR into X such that N(0, 0)=0, DN(O, 0)=0. (DN(O, 0)means the
Frchet derivative o N(x, ) with respect to x at x=0, =0.)

Assumption 2’. N(x) is a C3-mapping of a neighborhood V o 0
(in X) into X such that N(0)=0.

Before stating our results, we shall give the definition of a local
(o-limit set o a solution u(t, Xo) of (E). Let U, U be neighborhoods
of 0 with U Uc V. For x0 e U we define a local -limit set 9,(x0)
o a solution u(t, Xo) o2 (E’) by

[0 closure {u(t, x0) t_ s} (if u(t, xo) e U.,

_
O)

/2,(x0) - (otherwise)
2. Results. Theorem 1. Under Assumptions 1 and2, if a null

solution 0 of (E) changes its stability at 2=0, then non-stationary
periodic orbits bifurcate from (x, 2)=(0, 0).

Theorem 2. Under Assumptions 1 and 2’, there exists a neighbor-
hood UI( V) of 0 such that if supxe v DxN(x)II is sufficiently small, then
for some U2(U1 U2 V) and for any Xo e U1 with [2u1,u(Xo) =/= , [2u,u(Xo)
consists only of a periodic orbit y(Xo) of (E’)in U ((x0)may be {0}).
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Moreover, u(t, Xo)--.y(Xo) (t--). In particular, the condition 9,,(Xo)
:/: is satisfied if we further assume; (i) a null solution 0 is unstable,
and (ii)there exists a unique non-stationary periodic orbit of (E’)in
U., which is stable.

The proofs of theorems will be published elsewhere.
3. Remarks. Remark 1. Let (2) be the eigenvalue near i o

the linearized operator L+DxN(O, 2). E. Hopf [3] showed that if
( 1 ) O Re (0)/02 =/= 0,
then non-stationary periodic orbits of (E) bifurcate from (x, 2)=(0, 0).
The condition (1) can be replaced by the condition (2)" Re (2))0 (2)0)
and a null solution 0 is asymptotically stable at 2=0 ([1]), or the con-
dition (3)" Re () changes its sign at =0 ([4]). All the above condi-
tions are sufficient in order that a null solution 0 changes its stability
at =0 ([2]).

Remark 2. Under the condition (2), Chafee [1] showed that if
20 is sufficiently small and i an initial value x0 is sufficiently near 0,
then as t-+oo, a solution u(t, Xo, ,) of (E) converges either to {0} or to
an invariant set, which lies on a locally invariant manifold of dimen-
sion two.
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