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Abstract. The Broadwell model of the Boltzmann equation for
a discrete velocity gas is the space regular model with six velocities.
This model is investigated on the initial value problem. It is proved
that a unique solution exists globally in time for the small initial data
and that the solution has the bound which depends only on the initial
data. A priori estimate for the solution is based on the mass conser-
vation law.

1. Introduction. Among the discrete velocity models of the
Boltzmann equation, one of the simplest is the Broadwell model (space
regular model with 6 velocities) which is described by the following
semilinear hyperbolic system of equations (cf. [1]):

(1.1) F v. grad F=IQ, i- 1, 2, ..., 6,

where F,(t, x) denotes the mass density of particles, with velocity v, at
the time t and at the position x=(x, x., x), is a positive constant cor-
responding to the mean free path, and Q,/, represents the rate of
change of F, due to binary collisions. The velocities v, are given by

(1.2) v=(v, O, 0), v.=(O, v, 0), v=(O, O, v),
v+=--v, ]=1,2,3,

where v is a positive constant, and Q, have the following form:

(1.3) Q=Q/=, (FF/--FF/), ]=1, 2, 3.

The existence theorems of global solutions to the initial value pro-
blem for the discrete Boltzmann equation have been obtained by Nishi-
da and Mimura [4], Crandall and Tartar [5] and Cabannes [2] only for
some one-dimensional models. More precisely, Nishida and Mimura
obtained the global solution for the one-dimensional Broadwell model
(cf. [1]) when the initial data are small in a certain sense. Its proof
is based on the mass conservation law. Crandall and Tartar obtained
the global solution for the one-dimensional equations of the plane regu-

lar model with 4 velocities (cf. [3]) without smallness assumption on

the initial data, by combining the result of [4] with the H-theorem.
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Cabannes showed that the method o [5] is also valid for the one-dimen-
sional equations of the 14-velocity model (cf. [3]).

On the other hand the global existence o the solutions or the
multi-dimensional models is. not known except one for the plane regular
model with 4 velocities [4]. In the present paper we consider the
Broadwell moclel (1.1) and show the global existence of the solution for
the small initial data. Our proof is based on the mass conservation
law and a detailed estimate of the nonlinear terms Q.

2. Theorem. We consider the system (1.1) with the initial data
(2.1) F(O, x)=F(x), i=, 2, ..., 6, x e R.
We assume that the initial data F belong to _’(R) and satisfy the
following conditions or some positive constants E0 and L (]= 1, 2, 3)"
(2.2) O_F(x)_Eo, i-----1, 2, ..., 6, x e R,

(F+r/)(g(+/- s; x))ds_L, k], k, ]=1, 2, 3, x e R,(2.3)

0,1,2,3, ]=1,2,3, x

Here we denote the straight line --x+_(--x)=0, --xt=0 by a one
parameter amily =g(s; x), s=--x, and the planes= (-x)
=0 and (-x)=$-xt by two parameter amilies =h0(a; x),
a (z, a) ( x, x), and $ h(a x), a (a, a) {$ x i :/: 1},
respectively.

Theorem. Suppose the initial data F e _(R) satisfy the condi-
tions (2.2) and (2.3),, for positive constants Eo and L satisfying

(2.4) L
ev 6

Then the initial value problem (1.1), (2.1) has a unique global solution
F(t, x) which belongs to C([0, c); _(R)) C([0, c); _(R)) and
satisfies the estimate
(2.5) O_F(t, x)_2E0, i-- 1, 2, ..., 6,
for any t

_
0 and x e R.

The 2ollowing local existence theorem is well known (see [2], for
example).

Local existence theorem. If the initial data F e _(R) satisfy
the condition (2.2), then there exists a positive constant To, which de-
pends only on Eo, such that the problem (1.1), (2.1) has a unique solu-
tion F(t, x) which belongs to C([0, To]; _(R)) C([0, To]; -(R)) and
is non-negative.
Therefore the proo of Theorem is given by the standard continuation
argument of the local solution if we have the following a priori esti-
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mate for the solution.
Lemma (a priori estimate). Let T be some constant. If the initial

data F satisfy the same conditions as Theorem, then the non-negative
solution F e C([0, T] _I(R)) C1([0, T] _(R)) of the problem (1.1),
(2.1) satifies the following a priori estimate for any t e [0, T] and x e R
(2.6) F(t, x)_2E0, i= 1, 2, ..., 6.

:. Proof of Lemma. Let us estimate the quantity
(3.1) E=max sup F(t, x)

1KiK60KtT
xRa

by the similar method of [4]. We first integrate the mass conservation
law

(3.2) F + v(F--F+)x=O
i= =

over the dependence domain {(r, ); 0rt-=[x-l/v} of the
point (t, x) e [0, T] X R. By the Green’s formula, we have

=1 D {jxj} D {jgxj}

where we put

j=l

D= e R; ]x--]vt
j=l

The equality (3.3) plays an important role in proving the a priori esti-
mate or the solution.

Now integrate the first equation of (1.1) along the characteristic
line d/dr=v from (0, x-vt) to (t, x), we obtain
(3.4) F(t, x)=F(x-vt, x2, x)

(FF+FF--2FF) t-- $,, x, x d.

Since OF(t, x)E in the domain OtT, x e R,
(3.5) F(t, x)F(x,--vt, x, x)

+,_(F+F) t-
v ’ x, x d.

We estimate the integral in the second term of (3.5). For this we use
the equality

(3.6) F t- , x, x d
x-vt

F ,x--v t--
xx-vt

1 [x de, (FF+FF--2FF)jx-vt -v(-x-/v)
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which is obtained by the integration of the second equation of (1.1).
The double integral in (3.6) must be estimated carefully. From (3.4)
we have

( )(FF+FF--2FF t--Ix-____, ,,x,x d
V x-vt V

(FF-FF t- , x, x d+ 2v ,-vt v

(3.7) _-’F(x-vt, x, x)

+ 3E f F(t--lx--l
where we use O_F(t, x)_E. Change the variables t--t--lx.--.l/v,
x-+, in (3.7) and integrate it with respect to $ e [x-vt, x]. The
resulting inequality can be written in the form

1 xt ]x(3.8) --, d (FF+FF 2FF
-vt x-v(t- x-/v)

1 F(,x v(t ’Xl--l])x3)dl<
2 x-v v

d F

if we change the variable =x,-v(t-lx-]/v) in the single inte-
gral and apply the Fubini’s theorem to the double integrals.

We proceed to estimate the double integral in the right member of
(3.8). We use the following equality which is obtained by the integra-
tion of the third equation of (1.1)

f, x ( ,.,x_l , , x)d(3.9) d F t--
x-vt x-v(t- [x-[/v) V

d F
-vt

+
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x3 (F1F4-F2F--2F3F6)(e(), )d3.

By the equality (3.3) the triple integral in (3.9) is bounded by
E

j=l

Therefore from (3.6), (3.8) and (3.9) we arrive at

(3.10) F t- , x, x
x-vt

S Sx3 __E ’ dl F--- eV x-vt

3

By the assumptions (2.3),. on the initial data, the right member of
(3.10) has a bound

3 3 E 3 E(.) -+--+ (-).
In the same way, we can.show that the integral

i ( )F t x-- 1, , x, xa
xl-vt )

is also bounded by (3.11). Thus the bound of the integral in (3.5) is
obtained. Noting that F(x--vt, x, x)_Eo in (3.5), we obtain the fol-
lowing estimate or any t e [0, T] and x e R"

(, )<o/

__
/( )/()

Similarly we can show the same estimate for the other densities F(t,
x), i-2, 3, .--, 6. This and the definition of E give the inequality

(3.12) E< Eo+3L, E-- + 3L.( E]+ 3 L( E_E_).
From this inequality we can deduce E_2E0, if the constants E0 and

L satisfy (2.4). This completes the proof of Lemma.
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