34. An Asymptotic Property of a Certain Brownian Motion Expectation for Large Time

By Hiroyuki Ôkura

Department of Mathematics, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1981)

1. Let $(X(t): t \ge 0, P)$ be the Brownian motion in \mathbb{R}^d starting from X(0)=0. We give an asymptotic formula for the quantity $(1) \quad J(t)=J(t;\varphi)=E\left[\exp\left\{-\nu\int_{\mathbb{R}^d}\left\{1-\exp\left(-\int_0^t\varphi(X(\sigma)-y)d\sigma\right)\right\}dy\right\}\right]$ as $t\to\infty$, where E denotes the expectation with respect to P, φ a nonnegative Borel function on \mathbb{R}^d and $\nu>0$ a constant. Asymptotic behavior of J(t) has been investigated in connection with the study of the spectral distributions of the Schrödinger operators $-1/2\varDelta+q(x)$ with random potentials of the form $q(x)=\sum \varphi(x-\xi_n)$, where $\{\xi_n\}$ is the support of the Poisson random measure with intensity $\nu>0$ (see [2]-[7]).

Donsker and Varadhan [2] proved that if $\varphi(x) = o(1/|x|^{d+2})(|x| \to \infty)$ and $\int \varphi(x) dx > 0$, then

(2)
$$\lim_{t \to \infty} t^{-d/(d+2)} \log J(t) = -k(\nu)$$

exists and

(3)
$$k(\nu) = \nu^{2/(d+2)} \frac{d+2}{2} (2\lambda_1/d)^{d/(d+2)},$$

where λ_1 is the smallest eigenvalue for $-1/2\Delta$ in a sphere of unit volume with zero boundary condition. On the other hand, Pastur [7] proved that if $\varphi(x) \sim K/|x|^{d+\beta}(|x| \to \infty)$, where K > 0 and $0 < \beta < 2$, then (4) $\lim_{t \to \infty} t^{-d/(d+\beta)} \log J(t) = -\kappa(\nu, \beta, K)$

exists and

(5)
$$\kappa(\nu, \beta, K) = \nu K^{d/(d+\beta)} \Gamma\left(\frac{\beta}{d+\beta}\right) \Omega_d,$$

where Ω_d is the volume of a sphere of unit radius. The following theorem covers the critical case of $\varphi(x) \sim K/|x|^{d+2}(|x| \to \infty)$.

Theorem 1. Let $(X(t), t \ge 0)$ be the d-dimensional Brownian motion with X(0)=0. Suppose φ is a non-negative bounded Borel function of \mathbb{R}^d such that $\varphi(x) \sim K/|x|^{d+2}(|x|\to\infty)$, where K>0. Define J(t) by (1). Then for any $\nu > 0$

(6) $\lim_{t \to \infty} t^{-d/(d+2)} \log J(t) = -C(\nu, K)$

exists and $C(\nu, K) = \inf_{f \in \mathcal{F}_0} [I(f) + \Phi(f)]$, where

H. Ôkura

(7)
$$I(f) = \frac{1}{2} \int_{\mathbb{R}^d} |\nabla \sqrt{f}|^2 dx,$$
$$\Phi(f) = \nu \int_{\mathbb{R}^d} \left\{ 1 - \exp\left(-K \int_{\mathbb{R}^d} \frac{f(x) dx}{|x-y|^{d+2}}\right) \right\} dy$$

and $\mathcal{F}_0 = \{f \in \mathcal{F}; f \text{ has a bounded support and } I(f) < \infty\}.$

Here \mathcal{F} denotes the set of all probability density functions on \mathbb{R}^d and $\overline{\mathcal{V}}$ denotes the usual gradient vector in the distribution sense.

Remarks. (i) Theorem 1 is still valid if $K/|x|^{d+2}$ is replaced by any $\omega(x) > 0$ which is homogeneous of degree -(d+2), i.e., $\omega(\lambda x) = \omega(x)/\lambda^{d+2}$, $\lambda > 0$, and continuous in $x \neq 0$.

(ii) Furthermore, if the Brownian motion is replaced by a *d*dimensional symmetric stable process of index α (0 $<\alpha<2$), then Theorem 1 holds with d+2 and I(f) replaced by $d+\alpha$ and $I^{(\alpha)}(f)$ $=2^{-1}\int dx \int |\sqrt{f(x+y)} - \sqrt{f(x)}|^2 n(dy)$, respectively, where n(dy) is the Lévy measure of the stable process.

We next give some information as to how $C(\nu, K)$ in Theorem 1 depends on K and ν and how it is related to $k(\nu)$ in (3) and $\kappa(\nu, 2, K)$ in (5). In the following we write $\kappa(\nu, K)$ for $\kappa(\nu, 2, K)$.

Theorem 2. (i) $C(\nu, K)$ is strictly increasing, concave and continuous both in K>0 and in $\nu>0$.

(ii) $C(\nu, K) > \max\{k(\nu), \kappa(\nu, K)\}.$

(iii) $C(\nu, K) \downarrow k(\nu)$ as $K \downarrow 0$ and $C(\nu, K) \sim \kappa(\nu, K)$ as $K \uparrow \infty$.

(iv) $C(\nu, K) \sim k(\nu)$ as $\nu \downarrow 0$ and $C(\nu, K) \sim \kappa(\nu, K)$ as $\nu \uparrow \infty$.

The proof of Theorem 1 will be given in \S 2 and 3 and the proof of Theorem 2 will be given in \S 4.

2. Proof of Theorem 1 (upper bound). In this section we prove
(8)
$$\overline{\lim_{t\to\infty} t^{-d/(d+2)} \log J(t;\varphi)} \leq -C(\nu, K).$$

Let
$$\psi = \rho * \varphi$$
 (convolution), where $\rho \in \mathcal{F}$. We first prove
(9) $\overline{\lim_{k \to \infty} t^{-d/(d+2)}} \log J(t; \psi) \leq -C(\nu, K).$

To prove (9) we will use the argument similar to that of the upper bound in [2]. In particular, we appeal to the Donsker-Varadhan large deviation theorem for the Brownian motion on a torus ([1]). Let M > 0 be given. Let T be a d-dimensional torus of size M and let $G = \{(Mn_1, \dots, Mn_d) : n_i \in \mathbb{Z}, i = 1, \dots, d\}$ so that $T = \mathbb{R}^d/G$. We think of T as $[0, M]^d \subset \mathbb{R}^d$ with the sides identified. Let \mathcal{F}_M be the set of all probability density functions on T, but periodically extended to the whole space \mathbb{R}^d . For $g \in \mathcal{F}_M$ let

$$\Phi^{\rm M}(g) = \nu \int_{T} \left\{ 1 - \exp\left(-K \int_{R^d} \frac{g(x)dx}{|x-y|^{d+2}}\right) \right\} dy \text{ and } I^{\rm M}(g) = \frac{1}{2} \int_{T} |\nabla \sqrt{g}|^2 dx$$

if the right hand side makes sense, otherwise $I^{\mathbb{M}}(g) = \infty$.

156

No. 3]

Lemma 2.1. Let $\psi(x) = \rho * \varphi(x) \equiv \int_{\mathbb{R}^d} \rho(x-y)\varphi(y) dy$ with $\rho \in \mathcal{F}$. Then

(10)
$$\overline{\lim_{t\to\infty}t^{-d/(d+2)}\log J(t;\psi)} \leq -\inf_{g\in\mathcal{F}_M}[I^{\mathbb{M}}(g) + \Phi^{\mathbb{M}}(g)].$$

Proof. For any $\varepsilon > 0$ define $k_{\epsilon} \in \mathcal{F}_{M}$ by $k_{\epsilon}(x) = \sum_{\gamma \in G} \rho_{\epsilon}(x+\gamma), x \in \mathbb{R}^{d}$, where $\rho_{\epsilon}(x) = \varepsilon^{-d}\rho(\varepsilon^{-1}x)$. Moreover, for any trajectory $\omega = x(\cdot)$ on T and any $\tau > 0$ define $g_{\tau}(\omega, \cdot) \in \mathcal{F}_{M}$ by $g_{\tau}(\omega, y) = \tau^{-1} \int_{0}^{\tau} k_{\epsilon(\tau)}(x(\sigma) - y) d\sigma$, $y \in \mathbb{R}^{d}$, where $\varepsilon(\tau) = \tau^{-1/d}$. Let $X(t), t \ge 0$ be a trajectory in \mathbb{R}^{d} with X(0) = 0. Define, for each s > 0, a new trajectory $X^{s}(\cdot)$ by $X^{s}(t)$ $= s^{-1}X(s^{2}t)$. Let $\pi : \mathbb{R}^{d} \to T$ be the canonical projection. Set $\tau = \tau(t)$ $= t^{d/(d+2)}$ and $s = s(\tau) = \tau^{1/d} (= t^{1/(d+2)})$. By change of variables and using the argument in [2, p. 562], we have for the given $\psi = \rho * \varphi$

$$\exp\left\{-\nu \int_{\mathbb{R}^d} \left\{1 - \exp\left(-\int_0^t \psi(X(\sigma) - y) \, d\sigma\right)\right\} dy\right\}$$

$$\leq \exp\{-\tau \Phi_{\tau}^M(g_{\tau}(\omega, \cdot))\}(\omega = \pi(X^s(\cdot))),$$

where $\Phi_{\tau}^{M}(g) = \nu \int_{T} \left\{ 1 - \exp\left(-\int_{R^{d}} \varphi_{\tau}(x-y)g(x)dx\right) \right\} dy$, $g \in \mathcal{F}_{M}$ and $\varphi_{\tau}(z) = \tau^{(d+2)/d} \varphi(\tau^{1/d}z)$. Since the laws of $X^{s}(\cdot)$ and $X(\cdot)$ are identical, we have (11) $J(t; \psi) \leq E[\exp\{-\tau \Phi_{\tau}^{M}(g_{\tau}(\pi(X(\cdot)), \cdot))\}]$ $(\tau = t^{d/(d+2)})$.

Since $\varphi_{\mathfrak{r}}(z) \to K/|z|^{d+2}$ as $\tau \to \infty$, we can check by using Fatou's lemma twice that if $g^{\mathfrak{r}}, g \in \mathcal{F}_{\mathfrak{M}}$ satisfy $g^{\mathfrak{r}} \to g$ in $L^{1}(\mathbf{T}, dx)$ as $\tau \to \infty$, then $\lim \Phi_{\mathfrak{r}}^{\mathfrak{M}}(g^{\mathfrak{r}}) \ge \Phi^{\mathfrak{M}}(g)$. Thus it follows from Corollary to Theorem 5.1 of [1] that

(12)
$$\overline{\lim_{\tau\to\infty}} \frac{1}{\tau} \log E[\exp\{-\tau \Phi^{\mathsf{M}}_{\tau}(g_{\tau}(\pi(X(\cdot)), \cdot))\}] \leq -\inf_{g\in\mathcal{F}_{\mathsf{M}}} [I^{\mathsf{M}}(g) + \Phi^{\mathsf{M}}(g)].$$

Combining (12) with (11), we have (10).

To establish (9) we have only to prove the following lemma since M > 0 is arbitrary.

Lemma 2.2.
$$\sup_{M>0} \inf_{g \in \mathcal{F}_M} [I^M(g) + \Phi^M(g)] \geq C(\nu, K).$$

This is the analogue of Lemma 3.5 of [2] and can be proved similarly with a slight modification. We omit the proof.

The following lemma reduces (8) to (9).

Lemma 2.3. For each 0 < a < 1 there is a $\tilde{\varphi}(x) \ge 0$ with the property that $\tilde{\varphi}(x) \sim aK/|x|^{d+2}(|x| \to \infty)$ and a $\rho \in \mathcal{F}$ such that $\tilde{\psi}(x) \equiv \rho * \tilde{\varphi}(x) \le \varphi(x)$ for all $x \in \mathbb{R}^d$.

Proof. Let $\tilde{\varphi}(x) = aK/|x|^{d+2}$ if $|x| \ge R$, $\tilde{\varphi}(x) = 0$ otherwise and let $\rho \in \mathcal{F}$ satisfy $\{\rho > 0\} \subset \{|x| < \delta\}$. Then one can check that $\rho * \tilde{\varphi} \le \varphi$ for large R > 0 and small $\delta > 0$. Q.E.D.

It follows from (9) that for $\tilde{\psi}$ in Lemma 2.3

 $\overline{\lim} t^{-d/(d+2)} \log J(t; \tilde{\psi}) \leq -C(\nu, aK).$

Since $J(t; \varphi) \leq J(t; \tilde{\psi})$, we have (8) with aK replacing K. Letting $a \uparrow 1$, we have (8) by Theorem 2 (i).

H. Ôkura

3. Proof of Theorem 1 (lower bound). In this section we prove (13) $\lim_{k \to 0} t^{-d/(d+2)} \log J(t) \ge -C(\nu, K).$

By the inequality due to Pastur [7] (see also [4], [5]) we have (14) $J(t) \ge \|\sqrt{f}\|_{\infty}^{-1} \|\sqrt{f}\|_{1}^{-1} \exp\{-[tI(f) + \Psi_{t}(f)]\}, \quad f \in \mathcal{F}_{0},$ where $\Psi_{t}(f) = \nu \int \left\{1 - \exp\left(-t \int \varphi(x-y)f(x)dx\right)\right\} dy, \quad \|u\|_{\infty} = \text{ess. sup } \|u\|$ and $\|u\|_{1} = \int |u| dx.$ Define $f_{t} \in \mathcal{F}_{0}, t > 0$ by $f_{t}(x) = t^{-d/(d+2)}f(t^{-1/(d+2)}x)$ for any bounded $f \in \mathcal{F}_{0}$ and substitute f_{t} for f in (14). Then, by change of variables, we have

$$J(t) \ge \|\sqrt{f}\|_{\infty}^{-1} \|\sqrt{f}\|_{1}^{-1} \exp\{-t^{d/(d+2)} [I(f) + \Phi_{t}(f)]\},$$

where $\Phi_{t}(f) = \nu \int \{1 - \exp\left(-\int t\varphi(t^{1/(d+2)}(x-y))f(x)dx\right)\} dy$, and hence
$$\lim_{t \to \infty} t^{-d/(d+2)} \log J(t) \ge -[I(f) + \overline{\lim_{t \to \infty}} \Phi_{t}(f)].$$

Note that there is an A>0 such that $\varphi(x) \leq A/|x|^{d+2}$, $x \in \mathbb{R}^d$ since φ is bounded. Thus we can prove $\overline{\lim} \Phi_i(f) \leq \Phi(f)$ by using the Lebesgue-Fatou theorem twice. Hence we have

(15) $\lim_{t\to\infty} t^{-d/(d+2)} \log J(t) \ge -[I(f) + \Phi(f)]$

for any bounded $f \in \mathcal{F}_0$. It is easy to see by a truncation argument that (15) holds for any $f \in \mathcal{F}_0$, proving (13).

4. Proof of Theorem 2. The first assertion follows from the definition of $C(\nu, K)$ and (iii), (iv). Define $\Phi(f; a)$ for a > 0 by $\Phi(f)$ in (7) with aK replacing K and define $\tilde{C}(a, \nu, K) = \inf[aI(f) + \Phi(f)](f \in \mathcal{F}_0)$ for a > 0. Noting that $I(f_R) = R^{-2}I(f)$, $\Phi(f_R) = R^d \Phi(f; 1/R^{d+2})$, where $f_R(x) = R^{-d} f(R^{-1}x)$, R > 0, we have

(16) $C(\nu, K) = \nu^{2/(d+2)} C(1, \nu K) = \nu K^{d/(d+2)} \tilde{C}(\nu^{-1}K^{-1}, 1, 1).$ Thus Theorem 2 follows from the following

Lemma 4.1. (i) $C(1, K) \downarrow \inf [I(f) + |\{f > 0\}|] = k(1) \text{ as } K \downarrow 0.$

(ii) $\tilde{C}(a, 1, 1) \downarrow \int \{1 - \exp(-1/|y|^{d+2})\} dy = \kappa(1, 1) \text{ as } a \downarrow 0.$

Here |A| denotes the Lebesgue measure of the set A.

Proof. Equalities in (i) and (ii) are known ([2], [7]). Since $C(1, K) \downarrow \inf [I(f) + |\{U = \infty\}|] (K \downarrow 0)$, where $U(y) = \int \frac{f(x)dx}{|x-y|^{d+2}}$, (i) is a consequence of the fact that $U(y) = \infty$ if and only if f(y) > 0 a.e. for each $f \in \mathcal{F}_0$. "If" part follows from $U(y) \ge r^{-d-2} \int_{|x| < r} f(x+y)dx$ since $r^{-d} \int_{|x| < r} f(x+y)dx \rightarrow \text{const.} \times f(y)$ a.e. $(r \downarrow 0)$ by the Lebesgue theorem (see [8, I]). "Only if" part follows from

$$\int_{\{f(y)=0\}} U(y)dy \leq \int dy \int \frac{|\sqrt{f(y+x)} + \sqrt{f(y-x)} - 2\sqrt{f(y)}|^2}{|x|^{d+2}} dx$$
$$= \text{const.} \times I(f) < \infty$$

(see [8, VIII 5.2] for the equality). It is easy to see that $\tilde{C}(a, 1, 1) \downarrow \inf \Phi(f) \ (a \downarrow 0)$ with $\nu = K = 1$. We have $\Phi(f) \ge \kappa(1, 1)$ by Jensen's inequality, while we can choose $f_{\epsilon} \in \mathcal{F}_0$ such that $\Phi(f_{\epsilon}) \rightarrow \kappa(1, 1)$, proving (ii). Q.E.D.

References

- M. D. Donsker and S. R. S. Varadhan: Asymptotic evaluation of Markov process expectations for large time. II. Comm. Pure Appl. Math., 28, 279-301 (1975).
- [2] ——: Asymptotics for the Wiener sausage. ibid., 28, 525-565 (1975).
- [3] S. Nakao: On the spectral distribution of the Schrödinger operator with random potential. Japan J. Math., 3, 111-139 (1977).
- [4] H. Ökura: On the spectral distributions of certain integro-differential operators with random potential. Osaka J. Math., 16, 633-666 (1979).
- [5] ——: Some limit theorems of Donsker-Varadhan type for Markov process expectations (to appear).
- [6] L. A. Pastur: Spectra of random self-adjoint operators. Russian Math. Surveys, 28, 1-67 (1973).
- [7] —: Behavior of some Wiener integrals at t→∞ and the density of states of Schrödinger equations with random potential. Theor. Math. Phys., 32, 615-620 (1977).
- [8] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press (1970).