3. The Spectrum of the Laplacian of a Z_{3}-Invariant Domain

By Masao Tanikawa
Institute of Mathematics, University of Tsukuba
(Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1981)

Introduction. In our previous note [3], the authors proved that for generic bounded domain in R^{2}, the eigenvalues of the Laplacian Δ with Dirichlet null boundary condition are of multiplicity one. In this paper, we study the eigenvalues of the Laplacian Δ of Z_{3}-invariant domains $\Omega_{\rho} \subset R^{n}$ parametrized by $\rho \in \Gamma$, where the parameter space Γ is an open subset in a Banach (Fréchet) space B.

There are two types of eigenvalues; the symmetric ones whose eigenfunctions u satisfy :

$$
u(x)-u(\sigma x)=0
$$

and the anti-symmetric ones whose eigenfunctions u satisfy :

$$
u(x)+u(\sigma x)+u\left(\sigma^{2} x\right)=0
$$

where $\sigma \in S O(n, R)$ is a generator of $Z_{3} \subset S O(n, R)$.
A subset of Γ is called residual if it is a countable intersection of open dense subsets. Our main theorem is

Theorem 1. There exists a residual subset $\Gamma_{0} \subset \Gamma$ such that for any $\rho \in \Gamma_{0}$, all symmetric eigenvalues of Ω_{ρ} are of multiplicity one and all anti-symmetric eigenvalues of Ω_{ρ} are of multiplicity two.

This is a partial answer to the conjecture of V. I. Arnol'd (cf. [1] Hypothesis of Transversality 5.1). Similar results were already obtained by B. H. Driscoll [2] for the operator $(\Delta+\lambda \rho)$ in the unit disc perturbed by some function ρ.
\S 1. Preliminary. Let $Z_{3} \subset S O(n, R)$ be a cyclic subgroup of order 3 generated by σ. Let $\Omega \subset R^{n}$ be a bounded domain with C^{r} boundary $\partial \Omega(5 \leqq r \leqq \infty)$. We assume that Ω is Z_{3}-invariant. Let $L^{2}(\Omega)$ $=\left\{u: \Omega \rightarrow R, \int_{\Omega} u(x)^{2} d x<\infty\right\} . L^{2}(\Omega)$ is a real Hilbert space with respect to the inner product $(u, v)=\int_{\Omega} u(x) v(x) d x$. We consider the symmetric subspace $W_{s}(\Omega)$ and the anti-symmetric subspace $W_{a}(\Omega)$:

$$
\begin{aligned}
& W_{s}(\Omega)=\left\{u \in L^{2}(\Omega) ;\left(1-\sigma^{*}\right) u(x)=0 \quad \text { a.e.x. }\right\} \\
& W_{a}(\Omega)=\left\{u \in L^{2}(\Omega) ;\left(1+\sigma^{*}+\left(\sigma^{2}\right)^{*}\right) u(x)=0 \quad \text { a.e.x. }\right\},
\end{aligned}
$$

where $\left(\sigma^{m}\right)^{*} u(x)=u\left(\sigma^{m} x\right), m=1,2 . \quad L^{2}(\Omega)$ is orthogonally decomposed into $\mathrm{W}_{s}(\Omega) \oplus \mathrm{W}_{a}(\Omega)$ and the orthogonal projection $\pi: L^{2}(\Omega) \rightarrow \mathrm{W}_{s}(\Omega)$ is equal to $\left(1+\sigma^{*}+\left(\sigma^{2}\right)^{*}\right) / 3$.

Let $B=\left\{\rho \in C^{r}(\partial \Omega: R) ; \sigma^{*} \rho=\rho\right\}$. We extend $\rho \in B$ to a C^{r-2}-mapping $\tilde{\rho}: R^{n} \rightarrow R^{n}$ as follows:

$$
\begin{aligned}
& \tilde{\rho}(x)=\left\{\begin{array}{cl}
\rho(x) \nu(x) & x \in \partial \Omega, \\
0 & x \notin N,
\end{array}\right. \\
& \sigma^{-1} \cdot \tilde{\rho} \cdot \sigma(x)=\tilde{\rho}(x) \quad x \in R^{n},
\end{aligned}
$$

where N is a sufficiently small tublar neighbourhood of $\partial \Omega$ and $\nu(x)$ is the unit outer normal at $x \in \partial \Omega$. Let $\Gamma=\left\{\rho \in B ;\|\tilde{\rho}\|_{C_{1}}<1\right\}$. Γ is an open set in a Banach (Frécht, if $r=\infty$) space B. For any $\rho \in \Gamma, I+\tilde{\rho}$: $R^{n} \rightarrow R^{n}$ is a C^{r-2}-diffeomorphism and we put $\Omega_{\rho}=(I+\tilde{\rho}) \Omega . \quad \Omega_{\rho}$ is a $Z_{3^{-}}$ invariant domain in R^{n} and its boundary $\partial \Omega_{\rho}=\{x+\rho(x) \nu(x) ; x \in \partial \Omega\}$ is of class C^{r-2}.

We define $T=T(\rho): L^{2}\left(\Omega_{\rho}\right) \rightarrow L^{2}(\Omega)$ by

$$
T u(x)=\sqrt{J(x)} u(x+\tilde{\rho}(x)) \quad x \in \Omega,
$$

where $J(x)$ is the Jacobian of $(I+\tilde{\rho})$ at $x \in \Omega$.
Lemma 1. T is an isomorphism of Hilbert spaces, that is, T is not only bijective but also preserves their inner products. Moreover T is a bijective mapping of $H^{k}\left(\Omega_{\rho}\right)$ to $H^{k}(\Omega)(k=1,2, \cdots, r-3)$, where $H^{k}(\Omega)$ is the Sobolev space of degree k.

Lemma 2. $\quad \sigma^{*}$ commutes with T, that is, $\sigma^{*} \cdot T=T \cdot \sigma^{*}$.
Lemma 3. The orthogonal projection $\pi: L^{2}(\Omega) \rightarrow W_{s}(\Omega)$ commutes with T, namely, $T\left(W_{s}\left(\Omega_{\rho}\right)\right)=W_{s}(\Omega)$ and $T\left(W_{a}\left(\Omega_{\rho}\right)\right)=W_{a}(\Omega)$.

We introduce a complex structure J on $W_{a}\left(\Omega_{\rho}\right)$ in the following manner :

$$
J u(x)=1 / \sqrt{3}\left(\sigma^{*}-\left(\sigma^{2}\right)^{*}\right) u(x), \quad u \in W_{a}\left(\Omega_{\rho}\right)
$$

We define a new Hermitian inner product $[u, v]=(u, v)+i(u, J v)$. Under this complex structure, $\sigma^{*} u=\exp (2 \pi i / 3) u$ for any $u \in W_{a}\left(\Omega_{\rho}\right)$.

Lemma 4. For any $\rho \in \Gamma, W_{a}\left(\Omega_{\rho}\right)$ is a complex Hilbert space and T preserves its complex structure J.
§2. Reduction. We consider the eigenvalue problem (P.1):

$$
\left\{\begin{align*}
(-\Delta-\lambda) u(x) & =0 \quad x \in \Omega_{\rho}, \tag{P.1}\\
\left.u\right|_{\partial \Omega_{\rho}} & =0,
\end{align*}\right.
$$

where $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2}$. Let $\Sigma\left(\Omega_{\rho}\right)=\left\{\lambda_{1} \leqq \lambda_{2} \leqq \lambda_{3} \leqq \cdots\right\}$ be the totality of eigenvalues of Problem (P.1).

Let $L(\rho)$ be the Friedrichs extension of $-T(\rho) \cdot \Delta \cdot T(\rho)^{-1}$ with Dirichlet null boundary condition. $L(\rho)$ is a self-adjoint operator in $L^{2}(\Omega)$ with domain $\mathscr{D}(L(\rho))=H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, where $H_{0}^{1}(\Omega)$ is the closure in $H^{1}(\Omega)$ of C^{∞}-functions with compact support in Ω. The spectrum of $L(\rho)$ is identical with $\Sigma\left(\Omega_{\rho}\right)$ together with respective multiplicities.

Lemma 5 (cf. [5]). For any u and $v \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, we have

$$
(L(\rho) u, v)=\int_{\Omega} \sum_{j} \sum_{k} S_{j k}\left(D_{j} u\right)\left(D_{k} v\right) d x
$$

where

$$
\begin{aligned}
& S_{j k}=S_{j k}(\rho)=\sum_{m}\left(\delta_{j k}+\partial \chi_{j} / \partial x_{m}\right)\left(\delta_{k m}+\partial \chi_{k} / \partial x_{m}\right), \\
& I+\chi=(I+\tilde{\rho})^{-1}, \\
& D_{j} u=\partial u / \partial x_{j}-\left(\partial(\log (J(x))) / \partial x_{j}\right) u / 2 .
\end{aligned}
$$

Theorem 2. $\lambda_{j}=\lambda_{j}(\rho)$ is a continuous function of $\rho \in \Gamma$ with respect to C^{r}-topology $(5 \leqq r \leqq \infty)$.

This is easily proved by using the so-called mini-max principle.
From now on we take account of the group action Z_{3}. Since the Laplacian Δ commutes with the orthogonal transformation σ and the domain Ω_{ρ} is Z_{3}-invariant, we can decompose $\Sigma\left(\Omega_{\rho}\right)$ into $\Sigma_{s}\left(\Omega_{\rho}\right) \cup \Sigma_{a}\left(\Omega_{\rho}\right)$, where $\Sigma_{s}\left(\Omega_{\rho}\right)$ and $\Sigma_{a}\left(\Omega_{\rho}\right)$ are the totalities of eigenvalues of Problem (P. 1) restricted to $W_{s}\left(\Omega_{\rho}\right)$ and $W_{a}\left(\Omega_{\rho}\right)$, respectively. We call $\lambda \in \Sigma_{s}\left(\Omega_{\rho}\right)$ a symmetric eigenvalue and $\lambda \in \Sigma_{a}\left(\Omega_{\rho}\right)$ an anti-symmetric eigenvalue, respectively. Since $T=T(\rho)$ commutes with the orthogonal projection $\pi, L(\rho)$ maps $W_{s}(\Omega)$ and $W_{a}(\Omega)$ into themselves, respectively. We put $L_{s}(\rho)=\left.L(\rho)\right|_{W_{s}(\Omega)}$ and $L_{a}(\rho)=\left.L(\rho)\right|_{W_{a}(\Omega)}$, respectively.

Lemma 6. The spectrum of $L_{s}(\rho)$ (resp. $\left.L_{a}(\rho)\right)$ is equal to $\Sigma_{s}\left(\Omega_{\rho}\right)$ (resp. $\left.\Sigma_{a}\left(\Omega_{\rho}\right)\right)$ together with respective multiplicities.

By Lemma 6, we are reduced to the study of the spectra of $L_{s}(\rho)$ and $L_{a}(\rho)$. Recall that the domains of $L_{s}(\rho)$ and $L_{a}(\rho)$ are independent of ρ. For the complex structure J introduced in $\S 1$, we have

Lemma 7. $L_{a}(\rho) \cdot J=J \cdot L_{a}(\rho)$ and $\left[L_{a}(\rho) u, v\right]=\left[u, L_{a}(\rho) v\right]$ for any u and $v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \cap W_{a}(\Omega)$.

We consider $L_{a}(\rho)$ as a complex linear operator $L_{c}(\rho)$. From Lemma 7 , it follows that $L_{c}(\rho)$ is a self-adjoint operator in $W_{a}(\Omega)$ with respect to the Hermitian inner product [,].

Lemma 8. $\quad \Sigma_{a}\left(\Omega_{\rho}\right)$ is equal to the spectrum $\operatorname{Spec}\left(L_{c}(\rho)\right)$ of $L_{c}(\rho)$ as a set and the multiplicity of $\lambda \in \Sigma_{a}\left(\Omega_{\rho}\right)$ is twice of the multiplicity of $\lambda \in \operatorname{Spec}\left(L_{c}(\rho)\right)$.
§3. Proof of the main theorem. Let $S_{m}=\{\rho \in \Gamma$; the first m spectra of $L_{s}(\rho)$ are of multiplicity one $\}$ and $T_{m}=\{\rho \in \Gamma$; the first m spectra of $L_{c}(\rho)$ are of multiplicity one $\}$. We put $S_{0}=T_{0}=\Gamma$. Then

$$
\begin{array}{ll}
S_{0} \supset S_{1} \supset S_{2} \supset \cdots ; & S=\bigcap_{m=1}^{\infty} S_{m}, \\
T_{0} \supset T_{1} \supset T_{2} \supset \cdots ; & T=\bigcap_{m=1}^{\infty} T_{m},
\end{array}
$$

Theorem 3. S_{m} and T_{m} are open in Γ with respect to C^{r}-topology $(5 \leqq r \leqq \infty), m=1,2, \cdots$.

Theorem 4. S_{m} is dense in S_{m-1} with respect to C^{r}-topology $(5 \leqq r$ $\leqq \infty), m=1,2, \cdots$.

Theorem 5. $\quad T_{m}$ is dense in T_{m-1} with respect to C^{r}-topology $(5 \leqq r$ $\leqq \infty), m=1,2, \cdots$.

Theorems 3-5 imply that S_{m} and T_{m} are open dense in Γ, hence Γ_{0} $=\mathrm{S} \cap T$ is residual. Theorem 3 is an immediate consequence of Theorem 2. The proofs of Theorems 4 and 5 are based on the following perturbation theorem due to Kato [4]: Let $\left\{H_{\tau}\right\}$ be a regular perturbation of self-adjoint operators parametrized by a real parameter τ on
some complex Hilbert space. Let H_{τ} be given formally $H_{0}+\tau H_{1}+\tau^{2} H_{2}$ $+\cdots$. Let λ be an isolated spectrum of H_{0} with multiplicity q.

Perturbation theorem. i) For every open interval $(a, b) \subset R$ such that $\operatorname{Spec}\left(H_{0}\right) \cap(a, b)=\{\lambda\}$, there are exactly q eigenvalues (counting multiplicity) $\lambda^{1}(\tau), \lambda^{2}(\tau), \cdots, \lambda^{q}(\tau)$ of H_{τ} in (a, b) where $\lambda^{i}(\tau)=\lambda+\tau \lambda_{1}^{i}+\tau^{2} \lambda_{2}^{i}$ $+\cdots$ are real analytic functions for small $\tau(i=1,2, \cdots, q)$.
ii) Let $\left\{u^{1}, u^{2}, \cdots, u^{q}\right\}$ be an orthonormal basis of λ-eigenspace of H_{0}. Then $\lambda_{1}^{i}(i=1,2, \cdots, q)$ are the roots of the equation $\operatorname{det}\left(\lambda \delta_{j k}\right.$ $\left.-\left[H_{1} u^{j}, u^{k}\right]\right)=0$.

In order to apply Perturbation theorem, we replace $\rho \in \Gamma$ by $\rho_{0}+\tau \rho$ for sufficiently small $\tau \in R$.

Lemma 9. $L\left(\rho_{0}+\tau \rho\right), L_{s}\left(\rho_{0}+\tau \rho\right)$ and $L_{c}\left(\rho_{0}+\tau \rho\right)$ are regular perturbation of τ on $L^{2}(\Omega) \otimes C, W_{s}(\Omega) \otimes C$ and $W_{a}(\Omega)$, respectively.

Lemma 10 (cf. [5]). Let u and v be λ-eigenfunctions of $L(0)$. Then we have

$$
\left.\frac{d}{d \tau}(L(\tau \rho) u, v)\right|_{r=0}=-\int_{\partial \Omega} \rho(x) \frac{\partial u}{\partial \nu}(x) \frac{\partial v}{\partial \nu}(x) d \omega(x)
$$

where $d \omega(x)$ is the surface element of $\partial \Omega$.
Proof of Theorems 4 and 5. We shall show that S_{m+1} (resp. T_{m+1}) is dense in S_{m} (resp. T_{m}) for $m=1,2, \cdots$. Assume that $\rho_{0} \in S_{m}$ (resp. T_{m}) is given. Since $\left(I+\tilde{\rho}_{0}+\tilde{\rho}\right) \Omega=(I+\tilde{\theta}) \Omega_{\rho 0}$ for some θ, we can replace $\Omega_{\rho_{0}}$ by Ω and $\Omega_{\rho_{0}+\rho}$ by Ω_{θ}, respectively. Thus we may assume $\rho_{0}=0$. Suppose that

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{m}=\lambda_{m+1}=\cdots=\lambda_{m+q}<\lambda_{m+q+1} \leqq \cdots
$$

are the spectra of $L_{s}(0)\left(\right.$ resp. $\left.L_{c}(0)\right)$. The first m spectra are simple and will remain simple under small perturbations of ρ by Theorem 2. The ($m+1$)-th spectrum $\lambda\left(=\lambda_{m+1}=\cdots=\lambda_{m+q}\right.$) has multiplicity q. We show that there is a linear perturbation $\rho(\tau)=\tau \rho$ such that the $(m+1)$-th spectrum of $L_{s}(\tau \rho)$ (resp. $L_{c}(\tau \rho)$) has multiplicity $\leqq q-1$ for small $\tau \neq 0$. By a finite sequence of perturbations of this type, the $(m+1)$-th spectrum can be made simple. By Perturbation theorem, it is sufficient to show that λ_{1}^{i} are not all the same.

For the proof of Theorem 4, we have only to consider the real Hilbert space $\mathrm{W}_{s}(\Omega)$. Let u^{j} and u^{k} be λ-eigenvectors of $L_{s}(0)$. Note that u^{j} and u^{k} are σ^{*}-invariant ($j, k=1,2, \cdots, q$).

$$
\begin{aligned}
\mu_{j k} & =\left.\frac{d}{d \tau}\left(L_{s}(\tau \rho) u^{j}, u^{k}\right)\right|_{\tau=0} \\
& =-\int_{\partial \Omega} \rho(x) \frac{\partial u^{j}}{\partial \nu}(x) \frac{\partial u^{k}}{\partial \nu}(x) d \omega(x) .
\end{aligned}
$$

If the equation $\operatorname{det}\left(\lambda \delta_{j k}-\mu_{j k}\right)=0$ only has a q-ple root α, then $\mu_{j k}=\alpha \delta_{j k}$. If $\mu_{j k} \neq 0(j \neq k)$, then at least two of the roots are distinct.

We assume that $\mu_{j k}=0(j \neq k)$ for any $\rho \in \Gamma$. Then

$$
\frac{\partial u^{j}}{\partial \nu}(x) \frac{\partial u^{k}}{\partial \nu}(x)=0 \quad \text { for any } x \in \partial \Omega
$$

which yields a contradiction to the fact that u^{j} and u^{k} are λ-eigenfunction of Problem (P. 1) (cf. [3]).

For the proof of Theorem 5, we have only to consider the complex Hilbert space $\mathrm{W}_{a}(\Omega)$. Let u^{j} and u^{k} be λ-eigenvectors of $L_{c}(0)(j, k$ $=1,2, \cdots, q)$. Note that u^{j} and u^{k} satisfy :

$$
\begin{aligned}
& u(x)+u(\sigma x)+u\left(\sigma^{2} x\right)=0 . \\
& \begin{aligned}
\mu_{j k}= & \left.\frac{d}{d \tau}\left[L_{c}(\tau \rho) u^{j}, u^{k}\right]\right|_{\tau=0} \\
= & \frac{d}{d \tau}\left(L_{a}(\tau \rho) u^{j},\right. \\
= & \left.u^{k}\right)\left.\right|_{r=0}+\left.i \frac{d}{d \tau}\left(L_{a}(\tau \rho) u^{j}, J u^{k}\right)\right|_{\tau=0} \\
= & \frac{1}{3} \int_{\partial \Omega} \rho(x)\left\{\frac{\partial u^{j}}{\partial \nu}(x) \frac{\partial u^{k}}{\partial \nu}(x)+\frac{\partial u^{j}}{\partial \nu}(\sigma x) \frac{\partial u^{k}}{\partial \nu}(\sigma x)\right. \\
& \left.\quad+\frac{\partial u^{j}}{\partial \nu}\left(\sigma^{2} x\right) \frac{\partial u^{k}}{\partial \nu}\left(\sigma^{2} x\right)\right\} d \omega(x) \\
+ & i / \sqrt{3} \int_{\partial \Omega} \rho(x)\left\{\frac{\partial u^{j}}{\partial \nu}(x)\left(\frac{\partial u^{k}}{\partial \nu}(\sigma x)-\frac{\partial u^{k}}{\partial \nu}\left(\sigma^{2} x\right)\right)\right. \\
& \quad \frac{\partial u^{j}}{\partial \nu}(\sigma x)\left(\frac{\partial u^{k}}{\partial \nu}\left(\sigma^{2} x\right)-\frac{\partial u^{k}}{\partial \nu}(x)\right) \\
& \left.\quad+\frac{\partial u^{j}}{\partial \nu}\left(\sigma^{2} x\right)\left(\frac{\partial u^{k}}{\partial \nu}(x)-\frac{\partial u^{k}}{\partial \nu}(\sigma x)\right)\right\} d \omega(x) .
\end{aligned}
\end{aligned}
$$

If for any $\rho \in \Gamma, \mu_{j k}=0(j \neq k)$, then following three equations hold for any $x \in \partial \Omega$:

$$
\begin{aligned}
& \frac{\partial u^{j}}{\partial \nu}(x)+\frac{\partial u^{j}}{\partial \nu}(\sigma x)+\frac{\partial u^{j}}{\partial \nu}\left(\sigma^{2} x\right)=0, \\
& \frac{\partial u^{j}}{\partial \nu}(x) \frac{\partial u^{k}}{\partial \nu}(x)+\frac{\partial u^{j}}{\partial \nu}(\sigma x) \frac{\partial u^{k}}{\partial \nu}(\sigma x)+\frac{\partial u^{j}}{\partial \nu}\left(\sigma^{2} x\right) \frac{\partial u^{k}}{\partial \nu}\left(\sigma^{2} x\right)=0, \\
& \frac{\partial u^{j}}{\partial \nu}(x)\left\{\frac{\partial u^{k}}{\partial \nu}(\sigma x)-\frac{\partial u^{k}}{\partial \nu}\left(\sigma^{2} x\right)\right\}+\frac{\partial u^{j}}{\partial \nu}(\sigma x)\left\{\frac{\partial u^{k}}{\partial \nu}\left(\sigma^{2} x\right)-\frac{\partial u^{k}}{\partial \nu}(x)\right\} \\
& \quad+\frac{\partial u^{j}}{\partial \nu}\left(\sigma^{2} x\right)\left\{\frac{\partial u^{k}}{\partial \nu}(x)-\frac{\partial u^{k}}{\partial \nu}(\sigma x)\right\}=0 .
\end{aligned}
$$

These are linear homogeneous equations with respect to $\left(\left(\partial u^{j} / \partial \nu\right)(x)\right.$, $\left.\left(\partial u^{j} / \partial \nu\right)(\sigma x),\left(\partial u^{j} / \partial \nu\right)\left(\sigma^{2} x\right)\right)$ and have a non-trivial solution for any x in some open set $\subset \partial \Omega$. Then the determinant of the equations is equal to :

$$
-2\left\{\left(\frac{\partial u^{k}}{\partial \nu}(x)\right)^{2}+\left(\frac{\partial u^{k}}{\partial \nu}(\sigma x)\right)^{2}+\left(\frac{\partial u^{k}}{\partial \nu}\left(\sigma^{2} x\right)\right)^{2}\right\}=0
$$

on some open set in $\partial \Omega$, which yields a contradiction to the fact that u^{k} is a λ-eigenfunction of Problem (P.1).

References

[1] Arnol'd, V. I.: Modes and quasi-modes. Funct. Anal. Appl., 6, 94-101 (1972).
[2] Driscoll, B. H.: The multiplicity of the eigenvalues of a symmetric drum. Thesis, Northwestern Univ., Illinois (1978).
[3] Fujiwara, D., Tanikawa, M., and Yukita, S.: The spectrum of the Laplacian and boundary perturbation. I. Proc. Japan Acad., 54A, 87-91 (1978).
[4] Kato, T.: On the convergence of the perturbation method. J. Fac. Sci. Univ. Tokyo, 6, 145-226 (1949).
[5] Micheletti, A. M.: Perturbazione dello Spettro doll'operatore di Laplace, in relazione ad una variazione del campo. Ann. Scuola Norm. Sup. Pisa, 26, 151-169 (1972).

