3. The Spectrum of the Laplacian of a Z_3 -Invariant Domain

By Masao Tanikawa

Institute of Mathematics, University of Tsukuba

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1981)

Introduction. In our previous note [3], the authors proved that for generic bounded domain in \mathbb{R}^2 , the eigenvalues of the Laplacian Δ with Dirichlet null boundary condition are of multiplicity one. In this paper, we study the eigenvalues of the Laplacian Δ of \mathbb{Z}_3 -invariant domains $\Omega_{\rho} \subset \mathbb{R}^n$ parametrized by $\rho \in \Gamma$, where the parameter space Γ is an open subset in a Banach (Fréchet) space B.

There are two types of eigenvalues; the symmetric ones whose eigenfunctions u satisfy:

 $u(x)-u(\sigma x)=0,$

and the anti-symmetric ones whose eigenfunctions u satisfy:

 $u(x)+u(\sigma x)+u(\sigma^2 x)=0,$

where $\sigma \in SO(n, R)$ is a generator of $Z_3 \subset SO(n, R)$.

A subset of Γ is called residual if it is a countable intersection of open dense subsets. Our main theorem is

Theorem 1. There exists a residual subset $\Gamma_0 \subset \Gamma$ such that for any $\rho \in \Gamma_0$, all symmetric eigenvalues of Ω_ρ are of multiplicity one and all anti-symmetric eigenvalues of Ω_ρ are of multiplicity two.

This is a partial answer to the conjecture of V. I. Arnol'd (cf. [1] Hypothesis of Transversality 5.1). Similar results were already obtained by B. H. Driscoll [2] for the operator $(\Delta + \lambda \rho)$ in the unit disc perturbed by some function ρ .

§ 1. Preliminary. Let $Z_s \subset SO(n, R)$ be a cyclic subgroup of order 3 generated by σ . Let $\Omega \subset R^n$ be a bounded domain with C^r boundary $\partial \Omega$ ($5 \leq r \leq \infty$). We assume that Ω is Z_s -invariant. Let $L^2(\Omega)$ $= \left\{ u: \Omega \to R, \int_{\Omega} u(x)^2 dx < \infty \right\}$. $L^2(\Omega)$ is a real Hilbert space with respect to the inner product $(u, v) = \int_{\Omega} u(x)v(x)dx$. We consider the symmetric subspace $W_s(\Omega)$ and the anti-symmetric subspace $W_a(\Omega)$:

 $W_s(\Omega) = \{ u \in L^2(\Omega) ; (1 - \sigma^*) u(x) = 0 \qquad \text{a.e.x.} \},\$

 $W_a(\Omega) = \{ u \in L^2(\Omega) ; (1 + \sigma^* + (\sigma^2)^*) u(x) = 0$ a.e.x. $\},$

where $(\sigma^m)^* u(x) = u(\sigma^m x)$, m = 1, 2. $L^2(\Omega)$ is orthogonally decomposed into $W_s(\Omega) \oplus W_a(\Omega)$ and the orthogonal projection $\pi : L^2(\Omega) \to W_s(\Omega)$ is equal to $(1 + \sigma^* + (\sigma^2)^*)/3$.

Let $B = \{\rho \in C^r(\partial \Omega : R); \sigma^* \rho = \rho\}$. We extend $\rho \in B$ to a C^{r-2} -mapping $\tilde{\rho} : R^n \to R^n$ as follows:

M. TANIKAWA

$$\tilde{\rho}(x) = \begin{cases} \rho(x)\nu(x) & x \in \partial \Omega, \\ 0 & x \notin N, \end{cases}$$
$$\sigma^{-1} \cdot \tilde{\rho} \cdot \sigma(x) = \tilde{\rho}(x) & x \in R^n, \end{cases}$$

where N is a sufficiently small tublar neighbourhood of $\partial\Omega$ and $\nu(x)$ is the unit outer normal at $x \in \partial\Omega$. Let $\Gamma = \{\rho \in B ; \|\tilde{\rho}\|_{c_1} < 1\}$. Γ is an open set in a Banach (Frécht, if $r = \infty$) space B. For any $\rho \in \Gamma$, $I + \tilde{\rho}$: $R^n \to R^n$ is a C^{r-2} -diffeomorphism and we put $\Omega_{\rho} = (I + \tilde{\rho})\Omega$. Ω_{ρ} is a Z_3 invariant domain in R^n and its boundary $\partial\Omega_{\rho} = \{x + \rho(x)\nu(x) ; x \in \partial\Omega\}$ is of class C^{r-2} .

We define $T = T(\rho) : L^2(\Omega_{\rho}) \rightarrow L^2(\Omega)$ by $Tu(x) = \sqrt{J(x)} u(x + \tilde{\rho}(x)) \qquad x \in \Omega,$

where J(x) is the Jacobian of $(I + \tilde{\rho})$ at $x \in \Omega$.

Lemma 1. T is an isomorphism of Hilbert spaces, that is, T is not only bijective but also preserves their inner products. Moreover T is a bijective mapping of $H^{k}(\Omega_{\rho})$ to $H^{k}(\Omega)$ $(k=1, 2, \dots, r-3)$, where $H^{k}(\Omega)$ is the Sobolev space of degree k.

Lemma 2. σ^* commutes with T, that is, $\sigma^* \cdot T = T \cdot \sigma^*$.

Lemma 3. The orthogonal projection $\pi: L^2(\Omega) \to W_s(\Omega)$ commutes with T, namely, $T(W_s(\Omega_s)) = W_s(\Omega)$ and $T(W_a(\Omega_s)) = W_a(\Omega)$.

We introduce a complex structure J on $W_a(\Omega_{\rho})$ in the following manner:

$$Ju(x) = 1/\sqrt{3} (\sigma^* - (\sigma^2)^*)u(x), \qquad u \in W_a(\Omega_\rho)$$

We define a new Hermitian inner product [u, v] = (u, v) + i(u, Jv). Under this complex structure, $\sigma^* u = \exp(2\pi i/3)u$ for any $u \in W_a(\Omega_{\rho})$.

Lemma 4. For any $\rho \in \Gamma$, $W_a(\Omega_{\rho})$ is a complex Hilbert space and T preserves its complex structure J.

§ 2. Reduction. We consider the eigenvalue problem (P. 1):

(P. 1)
$$\begin{cases} (-\Delta - \lambda)u(x) = 0 & x \in \Omega_{\rho}, \\ u|_{\partial \Omega_{\rho}} = 0, \end{cases}$$

where $\Delta = \partial^2 / \partial x_1^2 + \partial^2 / \partial x_2^2 + \cdots + \partial^2 / \partial x_n^2$. Let $\Sigma(\Omega_{\rho}) = \{\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots\}$ be the totality of eigenvalues of Problem (P. 1).

Let $L(\rho)$ be the Friedrichs extension of $-T(\rho) \cdot \varDelta \cdot T(\rho)^{-1}$ with Dirichlet null boundary condition. $L(\rho)$ is a self-adjoint operator in $L^2(\Omega)$ with domain $\mathcal{D}(L(\rho)) = H_0^1(\Omega) \cap H^2(\Omega)$, where $H_0^1(\Omega)$ is the closure in $H^1(\Omega)$ of C^{∞} -functions with compact support in Ω . The spectrum of $L(\rho)$ is identical with $\Sigma(\Omega_{\rho})$ together with respective multiplicities.

Lemma 5 (cf. [5]). For any u and $v \in H_0^1(\Omega) \cap H^2(\Omega)$, we have

$$(L(\rho)u, v) = \int_{\mathcal{Q}} \sum_{j} \sum_{k} S_{jk}(D_{j}u)(D_{k}v) dx,$$

where

$$S_{jk} = S_{jk}(\rho) = \sum_{m} (\delta_{jk} + \partial \chi_j / \partial x_m) (\delta_{km} + \partial \chi_k / \partial x_m),$$

$$I + \chi = (I + \tilde{\rho})^{-1},$$

$$D_j u = \partial u / \partial x_j - (\partial (\log (J(x))) / \partial x_j) u / 2.$$

Theorem 2. $\lambda_j = \lambda_j(\rho)$ is a continuous function of $\rho \in \Gamma$ with respect to C^r -topology ($5 \le r \le \infty$).

This is easily proved by using the so-called mini-max principle.

From now on we take account of the group action Z_3 . Since the Laplacian \varDelta commutes with the orthogonal transformation σ and the domain Ω_{ρ} is Z_3 -invariant, we can decompose $\varSigma(\Omega_{\rho})$ into $\varSigma_s(\Omega_{\rho}) \cup \varSigma_a(\Omega_{\rho})$, where $\varSigma_s(\Omega_{\rho})$ and $\varSigma_a(\Omega_{\rho})$ are the totalities of eigenvalues of Problem (P. 1) restricted to $W_s(\Omega_{\rho})$ and $W_a(\Omega_{\rho})$, respectively. We call $\lambda \in \varSigma_s(\Omega_{\rho})$ a symmetric eigenvalue and $\lambda \in \varSigma_a(\Omega_{\rho})$ an anti-symmetric eigenvalue, respectively. Since $T = T(\rho)$ commutes with the orthogonal projection π , $L(\rho)$ maps $W_s(\Omega)$ and $W_a(\Omega)$ into themselves, respectively. We put $L_s(\rho) = L(\rho)|_{W_s(\Omega)}$ and $L_a(\rho) = L(\rho)|_{W_a(\Omega)}$, respectively.

Lemma 6. The spectrum of $L_s(\rho)$ (resp. $L_a(\rho)$) is equal to $\Sigma_s(\Omega_{\rho})$ (resp. $\Sigma_a(\Omega_{\rho})$) together with respective multiplicities.

By Lemma 6, we are reduced to the study of the spectra of $L_s(\rho)$ and $L_a(\rho)$. Recall that the domains of $L_s(\rho)$ and $L_a(\rho)$ are independent of ρ . For the complex structure J introduced in § 1, we have

Lemma 7. $L_a(\rho) \cdot J = J \cdot L_a(\rho)$ and $[L_a(\rho)u, v] = [u, L_a(\rho)v]$ for any u and $v \in H^2(\Omega) \cap H^1_0(\Omega) \cap W_a(\Omega)$.

We consider $L_a(\rho)$ as a complex linear operator $L_c(\rho)$. From Lemma 7, it follows that $L_c(\rho)$ is a self-adjoint operator in $W_a(\Omega)$ with respect to the Hermitian inner product [,].

Lemma 8. $\Sigma_a(\Omega_{\rho})$ is equal to the spectrum Spec $(L_c(\rho))$ of $L_c(\rho)$ as a set and the multiplicity of $\lambda \in \Sigma_a(\Omega_{\rho})$ is twice of the multiplicity of $\lambda \in \text{Spec}(L_c(\rho))$.

§ 3. Proof of the main theorem. Let $S_m = \{\rho \in \Gamma ; \text{ the first } m \text{ spectra of } L_s(\rho) \text{ are of multiplicity one} \}$ and $T_m = \{\rho \in \Gamma ; \text{ the first } m \text{ spectra of } L_c(\rho) \text{ are of multiplicity one} \}$. We put $S_0 = T_0 = \Gamma$. Then

$$S_0 \supset S_1 \supset S_2 \supset \cdots;$$
 $S = \bigcap_{m=1}^{\infty} S_m,$
 $T_0 \supset T_1 \supset T_2 \supset \cdots;$ $T = \bigcap_{m=1}^{\infty} T_m,$

Theorem 3. S_m and T_m are open in Γ with respect to C^r -topology $(5 \leq r \leq \infty), m=1, 2, \cdots$.

Theorem 4. S_m is dense in S_{m-1} with respect to C^r -topology ($5 \leq r \leq \infty$), $m=1, 2, \cdots$.

Theorem 5. T_m is dense in T_{m-1} with respect to C^r-topology ($5 \leq r \leq \infty$), $m=1, 2, \cdots$.

Theorems 3-5 imply that S_m and T_m are open dense in Γ , hence $\Gamma_0 = S \cap T$ is residual. Theorem 3 is an immediate consequence of Theorem 2. The proofs of Theorems 4 and 5 are based on the following perturbation theorem due to Kato [4]: Let $\{H_i\}$ be a regular perturbation of self-adjoint operators parametrized by a real parameter τ on

some complex Hilbert space. Let H_{τ} be given formally $H_0 + \tau H_1 + \tau^2 H_2 + \cdots$. Let λ be an isolated spectrum of H_0 with multiplicity q.

Perturbation theorem. i) For every open interval $(a, b) \subset R$ such that Spec $(H_0) \cap (a, b) = \{\lambda\}$, there are exactly q eigenvalues (counting multiplicity) $\lambda^1(\tau), \lambda^2(\tau), \dots, \lambda^q(\tau)$ of H_{τ} in (a, b) where $\lambda^i(\tau) = \lambda + \tau \lambda_1^i + \tau^2 \lambda_2^i + \cdots$ are real analytic functions for small $\tau(i=1, 2, \dots, q)$.

ii) Let $\{u^1, u^2, \dots, u^q\}$ be an orthonormal basis of λ -eigenspace of H_0 . Then λ_1^i $(i=1, 2, \dots, q)$ are the roots of the equation det $(\lambda \delta_{jk} - [H_1 u^j, u^k]) = 0$.

In order to apply Perturbation theorem, we replace $\rho \in \Gamma$ by $\rho_0 + \tau \rho$ for sufficiently small $\tau \in R$.

Lemma 9. $L(\rho_0+\tau\rho)$, $L_s(\rho_0+\tau\rho)$ and $L_c(\rho_0+\tau\rho)$ are regular perturbation of τ on $L^2(\Omega)\otimes C$, $W_s(\Omega)\otimes C$ and $W_a(\Omega)$, respectively.

Lemma 10 (cf. [5]). Let u and v be λ -eigenfunctions of L(0). Then we have

$$\frac{d}{d\tau}(L(\tau\rho)u, v)|_{\tau=0} = -\int_{\partial D} \rho(x) \frac{\partial u}{\partial \nu}(x) \frac{\partial v}{\partial \nu}(x) \ d\omega(x),$$

where $d\omega(x)$ is the surface element of $\partial \Omega$.

Proof of Theorems 4 and 5. We shall show that S_{m+1} (resp. T_{m+1}) is dense in S_m (resp. T_m) for $m=1, 2, \cdots$. Assume that $\rho_0 \in S_m$ (resp. T_m) is given. Since $(I + \tilde{\rho}_0 + \tilde{\rho})\Omega = (I + \tilde{\theta})\Omega_{\rho_0}$ for some θ , we can replace Ω_{ρ_0} by Ω and $\Omega_{\rho_0+\rho}$ by Ω_{θ} , respectively. Thus we may assume $\rho_0=0$. Suppose that

 $\lambda_1 < \lambda_2 < \cdots < \lambda_m = \lambda_{m+1} = \cdots = \lambda_{m+q} < \lambda_{m+q+1} \leq \cdots$

are the spectra of $L_s(0)$ (resp. $L_c(0)$). The first *m* spectra are simple and will remain simple under small perturbations of ρ by Theorem 2. The (m+1)-th spectrum $\lambda(=\lambda_{m+1}=\cdots=\lambda_{m+q})$ has multiplicity *q*. We show that there is a linear perturbation $\rho(\tau)=\tau\rho$ such that the (m+1)-th spectrum of $L_s(\tau\rho)$ (resp. $L_c(\tau\rho)$) has multiplicity $\leq q-1$ for small $\tau \neq 0$. By a finite sequence of perturbations of this type, the (m+1)-th spectrum can be made simple. By Perturbation theorem, it is sufficient to show that λ_1^i are not all the same.

For the proof of Theorem 4, we have only to consider the real Hilbert space $W_s(\Omega)$. Let u^j and u^k be λ -eigenvectors of $L_s(0)$. Note that u^j and u^k are σ^* -invariant $(j, k=1, 2, \dots, q)$.

$$\begin{split} \mu_{jk} &= \frac{d}{d\tau} (L_s(\tau \rho) u^j, \, u^k)|_{\tau=0} \\ &= -\int_{so} \rho(x) \frac{\partial u^j}{\partial \nu} (x) \frac{\partial u^k}{\partial \nu} (x) \, d\omega(x). \end{split}$$

If the equation det $(\lambda \delta_{jk} - \mu_{jk}) = 0$ only has a *q*-ple root α , then $\mu_{jk} = \alpha \delta_{jk}$. If $\mu_{jk} \neq 0$ $(j \neq k)$, then at least two of the roots are distinct.

We assume that $\mu_{jk} = 0$ $(j \neq k)$ for any $\rho \in \Gamma$. Then

Laplacian of a Z_3 -Invariant Domain

$$rac{\partial u^i}{\partial
u}(x) rac{\partial u^k}{\partial
u}(x) \!=\! 0 \qquad ext{for any } x \in \partial arOmega,$$

which yields a contradiction to the fact that u^{j} and u^{k} are λ -eigenfunction of Problem (P. 1) (cf. [3]).

For the proof of Theorem 5, we have only to consider the complex Hilbert space $W_a(\Omega)$. Let u^j and u^k be λ -eigenvectors of $L_c(0)$ $(j, k = 1, 2, \dots, q)$. Note that u^j and u^k satisfy: $u(x)+u(\sigma x)+u(\sigma^2 x)=0.$

$$\begin{split} \mu_{jk} &= \frac{d}{d\tau} [L_{c}(\tau\rho)u^{j}, u^{k}]|_{\tau=0} \\ &= \frac{d}{d\tau} [L_{c}(\tau\rho)u^{j}, u^{k}]|_{\tau=0} + i\frac{d}{d\tau} (L_{a}(\tau\rho)u^{j}, Ju^{k})|_{\tau=0} \\ &= -\frac{1}{3} \int_{\partial a} \rho(x) \Big\{ \frac{\partial u^{j}}{\partial \nu}(x) \frac{\partial u^{k}}{\partial \nu}(x) + \frac{\partial u^{j}}{\partial \nu}(\sigma x) \frac{\partial u^{k}}{\partial \nu}(\sigma x) \\ &\quad + \frac{\partial u^{j}}{\partial \nu}(\sigma^{2}x) \frac{\partial u^{k}}{\partial \nu}(\sigma^{2}x) \Big\} d\omega(x) \\ &\quad + i/\sqrt{3} \int_{\partial a} \rho(x) \Big\{ \frac{\partial u^{j}}{\partial \nu}(x) \Big(\frac{\partial u^{k}}{\partial \nu}(\sigma x) - \frac{\partial u^{k}}{\partial \nu}(\sigma^{2}x) \Big) \\ &\quad + \frac{\partial u^{j}}{\partial \nu}(\sigma^{2}x) \Big(\frac{\partial u^{k}}{\partial \nu}(\sigma^{2}x) - \frac{\partial u^{k}}{\partial \nu}(x) \Big) \\ &\quad + \frac{\partial u^{j}}{\partial \nu}(\sigma^{2}x) \Big(\frac{\partial u^{k}}{\partial \nu}(x) - \frac{\partial u^{k}}{\partial \nu}(\sigma x) \Big) \Big\} d\omega(x). \end{split}$$

If for any $\rho \in \Gamma$, $\mu_{jk} = 0$ $(j \neq k)$, then following three equations hold for any $x \in \partial \Omega$:

$$\begin{aligned} \frac{\partial u^{j}}{\partial \nu}(x) &+ \frac{\partial u^{j}}{\partial \nu}(\sigma x) + \frac{\partial u^{j}}{\partial \nu}(\sigma^{2}x) = 0, \\ \frac{\partial u^{j}}{\partial \nu}(x) \frac{\partial u^{k}}{\partial \nu}(x) &+ \frac{\partial u^{j}}{\partial \nu}(\sigma x) \frac{\partial u^{k}}{\partial \nu}(\sigma x) + \frac{\partial u^{j}}{\partial \nu}(\sigma^{2}x) \frac{\partial u^{k}}{\partial \nu}(\sigma^{2}x) = 0, \\ \frac{\partial u^{j}}{\partial \nu}(x) \Big\{ \frac{\partial u^{k}}{\partial \nu}(\sigma x) - \frac{\partial u^{k}}{\partial \nu}(\sigma^{2}x) \Big\} + \frac{\partial u^{j}}{\partial \nu}(\sigma x) \Big\{ \frac{\partial u^{k}}{\partial \nu}(\sigma^{2}x) - \frac{\partial u^{k}}{\partial \nu}(x) \Big\} \\ &+ \frac{\partial u^{j}}{\partial \nu}(\sigma^{2}x) \Big\{ \frac{\partial u^{k}}{\partial \nu}(x) - \frac{\partial u^{k}}{\partial \nu}(\sigma x) \Big\} = 0. \end{aligned}$$

These are linear homogeneous equations with respect to $((\partial u^j/\partial \nu)(x), (\partial u^j/\partial \nu)(\sigma x), (\partial u^j/\partial \nu)(\sigma^2 x))$ and have a non-trivial solution for any x in some open set $\subset \partial \Omega$. Then the determinant of the equations is equal to:

$$-2\left\{\left(\frac{\partial u^{k}}{\partial \nu}(x)\right)^{2}+\left(\frac{\partial u^{k}}{\partial \nu}(\sigma x)\right)^{2}+\left(\frac{\partial u^{k}}{\partial \nu}(\sigma^{2} x)\right)^{2}\right\}=0$$

on some open set in $\partial \Omega$, which yields a contradiction to the fact that u^{k} is a λ -eigenfunction of Problem (P. 1).

No. 1]

M. TANIKAWA

References

- [1] Arnol'd, V. I.: Modes and quasi-modes. Funct. Anal. Appl., 6, 94-101 (1972).
- [2] Driscoll, B. H.: The multiplicity of the eigenvalues of a symmetric drum. Thesis, Northwestern Univ., Illinois (1978).
- [3] Fujiwara, D., Tanikawa, M., and Yukita, S.: The spectrum of the Laplacian and boundary perturbation. I. Proc. Japan Acad., 54A, 87-91 (1978).
- [4] Kato, T.: On the convergence of the perturbation method. J. Fac. Sci. Univ. Tokyo, 6, 145-226 (1949).
- [5] Micheletti, A. M.: Perturbazione dello Spettro doll'operatore di Laplace, in relazione ad una variazione del campo. Ann. Scuola Norm. Sup. Pisa, 26, 151-169 (1972).