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Introduction. This is u continuation of our paper [2] which will
be referred to as (I) in this paper. Let k be a finite field with q ele-
ments" k=F, Z be a non-trivial character of the multiplicative group
k (extended by X(0)=0) nd f be function/-k. We shall put

S(z)= . z(f(x)).

Consider the polynomial
(0.1) f(x)=x+Ax+B, A, B e k, m>=3.
Denote by zI(A, B) the discriminant of f(x), i.e.
(0.2) zI(A, B)=(--1)-(m--1)-A+mB-.
We assume that (q, m)=(q, m-1)=l. The purpose of the paper is to
prove the following

Theorem. Let d be an integer>=2 such that (q, d)=(d, m)=(d,
m--2)=l and let Z be a non-trivial character of k of exponent d.
Then, there is a polynomial f(x)=x+Ax+B with A=/=O, B=O,
(A,B)=/=O such that
(0.3)
where =/- if m=3 and =/2(m-1) if m>=4.

Remark 1. By the well-known theorem2) we know that
(0.4) S(Z)I<= (m-- 1)/-q-
tor any polynomial f of degree m with (d, m)= 1.

Remark 2. When d=2, m can be any odd integer 3 and since
there is only one quadratic character Z we have the relation

N q+S(),
where N denotes the number of solutions (x, y) e k ot the equation
(0.5) y2 x +Ax+B.
Therefore, our Theorem means that among hyperelliptic curves of type
(0.5) with A :/:0, Bye0, I(A, B)ve0, there is a curve which satisfies the
inequality
(0.6)
where =4 if m=3 and =/2(m-1) if m>=5 (m" odd). A
similar remark can be made for the case d=3.

1) For example, we mean by (I.2.3) the item (2.3) in (I).
2) See Theorem 2C on p. 43 of [1].
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1. Method of the proof. We first remind the reader the
equality
(I. I. II) aE(Z) qr-(q 1)pF(Z),
where Y is a vector space over ] of dimension r, F is a mapping from
a finite set X into Y, Z is a non-trivial character of k and a(Z),
are invariants defined as follows. First, for a function f" Xk, we
write
(1.1) S(Z)= E z(f(x)).

xX

Next, the mapping F" X--Y induces a unction F" X--k by F-- F
for each linear form e Y*. We then put
(1.2) a(z)= Y, [S(Z)].
Now, or non-zero vectors u, v e Y, we write ulIv when they are pro-
portional to each other, i.e. when there is an a e k such that v=au.
In this situation, we write a=v" u. Finally, we put
(1.3) p(Z) z(r(x)’ F(y)),

(x,y) P

where

(1.4) P-I(x, y) e k,; F(x):/::O, F(y):/::O, F(x)llF(y)I.
Since we consider a fixed character Z of exponent d, we often write

S, a, p without Z.
To prove our Theorem, we first consider the case where X--k, Y

=k and F(x)=(x, x, 1). Since F(x)]IF(y) if and only if x=y, we have
(1.5) p=q,
nd, by (I.1.11), we get
(1.6) a,.=q(q--1).
Identifying the linear form 2 e Y* with 2=(a,/3, .)e k we can write
Fix)=ax+fix+ ’. We shall consider in Y* the following five subsets"

A {=(, 0, ); a, e k},
A {=(, 0, 0); e k},

Av {= (, , r); o, , r e k}.
If we put
(1.7) a= , ISl-, I<=]gV,

IAj

we have
(1.8) a=+aII--aII + O’IV+ O’V,

Among these terms, we have ai=.IZ(ax)l=0 since Z is non-
trivial and (d, m)=l, and v=(a,)(x)i Z(X+r))=0 since 0.
Therefore (1.8) becomes
(1.9)
In the next two sections, we shall compute the first two terms of (1.9)
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explicitly.
2. Computation of a. To find

(2.1) a-- E l z(x+x)l-,
(a,#) GK xek

we use the equality (I.l.ll) with X=k, Y=k nd F(x)--(x, x). We
see esily that
(2.2) F(x) llF(y)y=ax, a-l=l, x, y e .
Put ’--(m--1, q--l) and o--g(q-)/’ where g is a generator o the cyclic
group k. The we have the disjoint union

P-P0 U P, U U P,_ with(2.3)
P={(x, (ox), x e k}, 0i=6’--1.

From this we have
’ --i ’ --i

pF , z(F(x)" F(y))=, , Z(w-)=(q--1)
(x,y) eP =0 P i=0

and so

6’(q-- 1), i Z(o) 1,(2.4) P L 0, i Z(w) :/: 1.
Hence we have

(2.5) a {’q(q-- 1)’ if Z(w)= 1,
0, if x(o) =/= 1.

3. Computation of a. To find

(3.) z(x+r)-,
(a,)k

we use the equality (I.1.11) with X=k, Y=k and F(x)=(x, 1).
see that
(3.2) F(x)i[F(y)y =x, x, y e k.
Hence, when x0, there are " y’s with ’=(m, q--l).
=g(q-)/", then we have the disjoint union

P= {(0, 0)} U P0 U P U... U P,._ with(3.3)
P= {(x, x), x e k}, 0gig"--l.

Since z(F(x)" F(y))= 1 for (x, y)e P, we have
(3.4) pr 1+ (q--1)"
and hence
(3.5)

4.
(4.1)

On putting

(4.2)

We

If we put ]

aH q(q 1)(1 + (q-- 1)").
av, av* and av**. We consider here the most interesting sum

F, z(ax+x+r)
(a,,r) e (;x)

A =__fl, B--T

we have

(4.3) ev =(q-- 1)* with * )(’(x +Ax+B) .
(A,B) e (kX)

Let the group # act on the set (k) by the rule"
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(4.4) (A, B)t--(At-, Bt), t e kx.
Clearly, the stability group at each point (A, B) is trivial and so each
orbit consists of q-1 points and there are q-1 orbits in (kx). Since

(x+At-x+Bt)=z(t).(x+Ax+B), if we call (A,B),
1_< i< q 1, representatives of orbits, we have

q-1

(4.5) a*v=(q--1)a*v* with av**----, IS,l
i=l

where f(x) x +Ax+B.
From (1.6), (1.9), (2.5), (3.5), (4.3), (4.5), it follows that

(4 6) av** q(q+1--’-"), if Z(): 1,
[q(q+ 1-- "), if Z(w) =/= 1.

5. End of the proof. Let z/--//(A, B) be the discriminant of x
+Ax+B, A g=O, B q=O. By (0.2), it is clear that//(A, B) --0 if and only
if//((A, B)t)--O for all t e k. Hence the vanishing of//is a property
of an orbit. We call an orbit singular (resp. non-singular) if it con-
tains a point (A, B) such that A(A, B)-O (resp. z/(A, B)q=0). As is
easily verified, we have//(A, B)=0 if and only if the affine plane curve
y--x +Ax+B is non-singular.) There is always a singular orbit,
say, the one which contains the point ((-- 1)m, m-- 1). We claim
that there is only one singular orbit. In fact, assume that //(A, B)
=(--1)-’(m -1)-’A+mB-=0. Then, a simple computation
shows that (A, B)=((--1)m, m--1)t with t=(--1)mB/(m-- 1)A,
which means that every singular curve is in the orbit of the curve
((-1)m, m-l). From now on, we assume that q--2 curves (A, B),
li<=q--2, are non-singular and the last curve (Aq_,, Bq_,)--((--1)m,
m-- 1) is singular.

We now consider the sum
(5.1) Ss,_,= z(fq-I(X)), fq-(x)=x+(--1)mx+(m--1).

First, note the factorization"
(5.2) fq_(x)=(x-e)h(x), where e= 1 if m is odd, e=-1 if m is even

and h(x)=x-+2ex-+3x-’+ +(m-2)ex+(m-1).
Therefore, we have
(5.3) S_l=S()-;(h(e)), h(e)=(1/2)m(m-1):/:O.
Since ; is of exponent d and (d, m-2)=1, by the well-known result
(Theorem 2C on p. 43 of [1]) we have

(5.4) S(:)[(m-3)4’ q.
On the other hand, callf(x)--x+Ax+B one of the f(x)’s, 1<i<q--2,=
such that IS]=inf[Sl. Then, from (4.5), (5.3), (5.4), we get

(5.5) a*v*>=(q-2)ISI+IS-II>=(q-2)ISI2+(IS(z)I-1)2
>=(q-2)]SI2-21S(z)I+ l>=(q-2)lSl-2(m-3)/ q +1,

3) When (A, B)--0, the point ((--1)’mB/(m--1)A, 0) is the only singular point
of the affine curve ya--x+Ax+B.
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which implies that

]S(z)I. / av** + 2(m--3)/q --1(5.6)
q--2

Note that a**<:q since 3, 3"_>1 and that q-2>_q/3, q/3 since
On substituting the values of a** of. (4.6) in (5.6) we obtain the in-
equality (0.3) of Theorem.
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4) (5.6) is a generalization of (I.3.30).


