26. On Certain Numerical Invariants of Mappings over Finite Fields. V

By Takashi Ono
Department of Mathematics, Johns Hopkins University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 12, 1981)

Introduction. This is a continuation of our paper [2] which will be referred to as (I) in this paper. ${ }^{1)}$ Let k be a finite field with q elements: $k=F_{q}, \chi$ be a non-trivial character of the multiplicative group k^{\times}(extended by $\left.\chi(0)=0\right)$ and f be a function $k \rightarrow k$. We shall put

$$
S_{f}(\chi)=\sum_{x \in k} \chi(f(x)) .
$$

Consider the polynomial

$$
\begin{equation*}
f(x)=x^{m}+A x+B, \quad A, B \in k, \quad m \geqq 3 \tag{0.1}
\end{equation*}
$$

Denote by $\Delta(A, B)$ the discriminant of $f(x)$, i.e.
(0.2) $\quad \quad \quad(A, B)=(-1)^{m-1}(m-1)^{m-1} A^{m}+m^{m} B^{m-1}$.

We assume that $(q, m)=(q, m-1)=1$. The purpose of the paper is to prove the following

Theorem. Let d be an integer $\geqq 2$ such that $(q, d)=(d, m)=(d$, $m-2)=1$ and let χ be a non-trivial character of k^{\times}of exponent d. Then, there is a polynomial $f(x)=x^{m}+A x+B$ with $A \neq 0, B \neq 0$, $\Delta(A, B) \neq 0$ such that

$$
\begin{equation*}
\left|S_{f}(\chi)\right|<\kappa \sqrt{q}, \tag{0.3}
\end{equation*}
$$

where $\kappa=\sqrt{3}$ if $m=3$ and $\kappa=\sqrt{2(m-1)}$ if $m \geqq 4$.
Remark 1. By the well-known theorem ${ }^{2)}$ we know that

$$
\begin{equation*}
\left|S_{f}(\chi)\right| \leqq(m-1) \sqrt{q} \tag{0.4}
\end{equation*}
$$

for any polynomial f of degree m with $(d, m)=1$.
Remark 2. When $d=2, m$ can be any odd integer $\geqq 3$ and since there is only one quadratic character χ we have the relation

$$
N=q+S_{f}(\chi),
$$

where N denotes the number of solutions $(x, y) \in k^{2}$ of the equation

$$
\begin{equation*}
y^{2}=x^{m}+A x+B \tag{0.5}
\end{equation*}
$$

Therefore, our Theorem means that among hyperelliptic curves of type (0.5) with $A \neq 0, B \neq 0, \Delta(A, B) \neq 0$, there is a curve which satisfies the inequality

$$
\begin{equation*}
|N-q|<\kappa \sqrt{q} \tag{0.6}
\end{equation*}
$$

where $\kappa=\sqrt{3}$ if $m=3$ and $\kappa=\sqrt{2(m-1)}$ if $m \geqq 5$ (m : odd). A similar remark can be made for the case $d=3$.

1) For example, we mean by (I.2.3) the item (2.3) in (I).
2) See Theorem 2C on p. 43 of [1].
§ 1. Method of the proof. We first remind the reader the equality
(I.1.11)

$$
\sigma_{F}(\chi)=q^{r-1}(q-1) \rho_{F}(\chi)
$$

where Y is a vector space over k of dimension r, F is a mapping from a finite set X into Y, χ is a non-trivial character of k^{\times}and $\sigma_{F}(\chi), \rho_{F}(\chi)$ are invariants defined as follows. First, for a function $f: X \rightarrow k$, we write

$$
\begin{equation*}
S_{f}(\chi)=\sum_{x \in X} \chi(f(x)) \tag{1.1}
\end{equation*}
$$

Next, the mapping $F: X \rightarrow Y$ induces a function $F_{\lambda}: X \rightarrow k$ by $F_{\lambda}=\lambda \circ F$ for each linear form $\lambda \in Y^{*}$. We then put

$$
\begin{equation*}
\sigma_{F}(\chi)=\sum_{\lambda \in Y^{*}}\left|S_{F_{\lambda}}(\chi)\right|^{2} . \tag{1.2}
\end{equation*}
$$

Now, for non-zero vectors $u, v \in Y$, we write $u \| v$ when they are proportional to each other, i.e. when there is an $a \in k^{\times}$such that $v=a u$. In this situation, we write $a=v: u$. Finally, we put

$$
\begin{equation*}
\rho_{F}(\chi)=\sum_{(x, y) \in P} \chi(F(x): F(y)), \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
P=\left\{(x, y) \in k^{2} ; F(x) \neq 0, F(y) \neq 0, F(x) \| F(y)\right\} \tag{1.4}
\end{equation*}
$$

Since we consider a fixed character χ of exponent d, we often write $S_{f}, \sigma_{F}, \rho_{F}$ without χ.

To prove our Theorem, we first consider the case where $X=k, Y$ $=k^{3}$ and $F(x)=\left(x^{m}, x, 1\right)$. Since $F(x) \| F(y)$ if and only if $x=y$, we have (1.5)

$$
\rho_{F}=q,
$$

and, by (I.1.11), we get

$$
\begin{equation*}
\sigma_{F}=q^{3}(q-1) \tag{1.6}
\end{equation*}
$$

Identifying the linear form $\lambda \in Y^{*}$ with $\lambda=(\alpha, \beta, \gamma) \in k^{3}$ we can write $F_{\lambda}(x)=\alpha x^{m}+\beta x+\gamma$. We shall consider in Y^{*} the following five subsets :

$$
\begin{aligned}
& \Lambda_{\mathrm{I}}=\{\lambda=(\alpha, \beta, 0) ; \alpha, \beta \in k\}, \\
& \Lambda_{\mathrm{II}}=\{\lambda=(\alpha, 0, \gamma) ; \alpha, \gamma \in k\}, \\
& \Lambda_{\mathrm{III}}=\{\lambda=(\alpha, 0,0) ; \alpha \in k\}, \\
& \Lambda_{\mathrm{IV}}=\left\{\lambda=(0, \beta, \gamma) ; \beta, \gamma \in k^{\times}\right\}, \\
& \Lambda_{\mathrm{V}}=\left\{\lambda=(\alpha, \beta, \gamma) ; \alpha, \beta, \gamma \in k^{\times}\right\} .
\end{aligned}
$$

If we put

$$
\begin{equation*}
\sigma_{j}=\sum_{\lambda \in \Lambda_{j}}\left|S_{F_{\lambda}}\right|^{2}, \quad I \leqq j \leqq V, \tag{1.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sigma_{F}=\sigma_{\mathrm{I}}+\sigma_{\mathrm{II}}-\sigma_{\mathrm{III}}+\sigma_{\mathrm{IV}}+\sigma_{\mathrm{V}} . \tag{1.8}
\end{equation*}
$$

Among these terms, we have $\sigma_{\text {III }}=\sum_{\alpha \in k}\left|\sum_{x \in k} \chi\left(\alpha x^{m}\right)\right|^{2}=0$ since χ is nontrivial and $(d, m)=1$, and $\sigma_{\text {IV }}=\sum_{(\beta, r) \in(k \times) 2}\left|\sum_{x \in k} \chi(\beta x+\gamma)\right|^{2}=0$ since $\beta \neq 0$. Therefore (1.8) becomes

$$
\begin{equation*}
\sigma_{F}=\sigma_{\mathrm{I}}+\sigma_{\mathrm{II}}+\sigma_{\mathrm{V}} . \tag{1.9}
\end{equation*}
$$

In the next two sections, we shall compute the first two terms of (1.9)
explicitly.
§2. Computation of $\sigma_{I^{*}}$ To find

$$
\begin{equation*}
\sigma_{\mathrm{I}}=\sum_{(\alpha, \beta) \in K_{2}^{2}}\left|\sum_{x \in \kappa} \chi\left(\alpha x^{m}+\beta x\right)\right|^{2} \tag{2.1}
\end{equation*}
$$

we use the equality (I.1.11) with $X=k, Y=k^{2}$ and $F(x)=\left(x^{m}, x\right)$. We see easily that

$$
\begin{equation*}
F(x) \| F(y) \Leftrightarrow y=a x, \quad a^{m-1}=1, \quad x, y \in k^{\times} . \tag{2.2}
\end{equation*}
$$

Put $\delta^{\prime}=(m-1, q-1)$ and $\omega=g^{(q-1) / \delta^{\prime}}$ where g is a generator of the cyclic group k^{\times}. Then we have the disjoint union

$$
\begin{array}{ll}
P=P_{0} \cup P_{1} \cup \cdots \cup P_{\delta^{\prime}-1} & \text { with } \tag{2.3}\\
P_{i}=\left\{\left(x, \omega^{i} x\right), x \in k^{\times}\right\}, & 0 \leqq i \leqq \delta^{\prime}-1 .
\end{array}
$$

From this we have

$$
\rho_{F}=\sum_{(x, y) \in P} \chi(F(x): F(y))=\sum_{i=0}^{\delta^{\prime}-1} \sum_{P_{i}} \chi\left(\omega^{-i}\right)=(q-1)^{i^{\prime}-1} \sum_{i=0} \chi\left(\omega^{-i}\right),
$$

and so

$$
\rho_{F}=\left\{\begin{array}{cc}
\delta^{\prime}(q-1), & \text { if } \chi(\omega)=1 \tag{2.4}\\
0, & \text { if } \chi(\omega) \neq 1
\end{array}\right.
$$

Hence we have

$$
\sigma_{\mathrm{I}}=\left\{\begin{array}{cc}
\delta^{\prime} q(q-1)^{2}, & \text { if } \chi(\omega)=1 \tag{2.5}\\
0, & \text { if } \chi(\omega) \neq 1
\end{array}\right.
$$

§3. Computation of σ_{II}, To find

$$
\begin{equation*}
\sigma_{\mathrm{II}}=\sum_{(\alpha, \gamma) \in k^{2}}\left|\sum_{x \in k} \chi\left(\alpha x^{m}+\gamma\right)\right|^{2}, \tag{3.1}
\end{equation*}
$$

we use the equality (I.1.11) with $X=k, Y=k^{2}$ and $F(x)=\left(x^{m}, 1\right)$. We see that

$$
\begin{equation*}
F(x) \| F(y) \Leftrightarrow y^{m}=x^{m}, \quad x, y \in k . \tag{3.2}
\end{equation*}
$$

Hence, when $x \neq 0$, there are $\delta^{\prime \prime} y^{\prime}$ s with $\delta^{\prime \prime}=(m, q-1)$. If we put η $=g^{(q-1) / /^{\prime \prime}}$, then we have the disjoint union

$$
\begin{align*}
P & =\{(0,0)\} \cup P_{0} \cup P_{1} \cup \cdots \cup P_{\delta^{\prime \prime}-1} \quad \text { with } \tag{3.3}\\
P_{i} & =\left\{\left(x, \eta^{i} x\right), x \in k^{\times}\right\}, \quad 0 \leqq i \leqq \delta^{\prime \prime}-1 .
\end{align*}
$$

Since $\chi(F(x): F(y))=1$ for $(x, y) \in P$, we have

$$
\begin{equation*}
\rho_{F}=1+(q-1) \delta^{\prime \prime} \tag{3.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sigma_{\mathrm{II}}=q(q-1)\left(1+(q-1) \delta^{\prime \prime}\right) \tag{3.5}
\end{equation*}
$$

§4. $\sigma_{\mathrm{v}}, \sigma_{\mathrm{v}}^{*}$ and $\sigma_{\mathrm{v}}^{* *}$. We consider here the most interesting sum

$$
\begin{equation*}
\sigma_{\mathrm{V}}=\sum_{(\alpha, \beta, r) \in(k \times)^{3}} \mid \sum_{x \in k} \chi\left(\alpha x^{m}+\beta x+\gamma\right)^{2} . \tag{4.1}
\end{equation*}
$$

On putting

$$
\begin{equation*}
A=\frac{\beta}{\alpha}, \quad B=\frac{\gamma}{\alpha}, \tag{4.2}
\end{equation*}
$$

we have
(4.3) $\quad \sigma_{\mathrm{v}}=(q-1) \sigma_{\mathrm{v}}^{*} \quad$ with $\quad \sigma_{\mathrm{V}}^{*}=\sum_{(A, B) \in(k \times)^{2}}\left|\sum_{x \in k} \chi\left(x^{m}+A x+B\right)\right|^{2}$.

Let the group k^{\times}act on the set $\left(k^{\times}\right)^{2}$ by the rule:
(4.4)

$$
(A, B) t=\left(A t^{m-1}, B t^{m}\right), \quad t \in k^{\times} .
$$

Clearly, the stability group at each point (A, B) is trivial and so each orbit consists of $q-1$ points and there are $q-1$ orbits in $\left(k^{\times}\right)^{2}$. Since $\sum_{x \in k} \chi\left(x^{m}+A t^{m-1} x+B t^{m}\right)=\chi(t)^{m} \sum_{x \in k} \chi\left(x^{m}+A x+B\right)$, if we call $\left(A_{i}, B_{i}\right)$, $1 \leqq i \leqq q-1$, representatives of orbits, we have

$$
\begin{align*}
& \sigma_{\mathrm{V}}^{*}=(q-1) \sigma_{\mathrm{V}}^{* *} \quad \text { with } \quad \sigma_{\mathrm{V}}^{* *}=\sum_{i=1}^{q-1}\left|S_{f_{i}}\right|^{2} \tag{4.5}\\
& \text { where } f_{i}(x)=x^{m}+A_{i} x+B_{i} .
\end{align*}
$$

From (1.6), (1.9), (2.5), (3.5), (4.3), (4.5), it follows that

$$
\sigma_{\mathrm{V}}^{* *}= \begin{cases}q\left(q+1-\delta^{\prime}-\delta^{\prime \prime}\right), & \text { if } \chi(\omega)=1 \tag{4.6}\\ q\left(q+1-\delta^{\prime \prime}\right), & \text { if } \chi(\omega) \neq 1\end{cases}
$$

$\S 5$. End of the proof. Let $\Delta=\Delta(A, B)$ be the discriminant of x^{m} $+A x+B, A \neq 0, B \neq 0$. By (0.2), it is clear that $\Delta(A, B)=0$ if and only if $\Delta((A, B) t)=0$ for all $t \in k^{\times}$. Hence the vanishing of Δ is a property of an orbit. We call an orbit singular (resp. non-singular) if it contains a point (A, B) such that $\Delta(A, B)=0$ (resp. $\Delta(A, B) \neq 0$). As is easily verified, we have $\Delta(A, B) \neq 0$ if and only if the affine plane curve $y^{d}=x^{m}+A x+B$ is non-singular. ${ }^{3)}$ There is always a singular orbit, say, the one which contains the point $\left((-1)^{m} m, m-1\right)$. We claim that there is only one singular orbit. In fact, assume that $\Delta(A, B)$ $=(-1)^{m-1}(m-1)^{m-1} A^{m}+m^{m} B^{m-1}=0$. Then, a simple computation shows that $(A, B)=\left((-1)^{m} m, m-1\right) t$ with $t=(-1)^{m} m B /(m-1) A$, which means that every singular curve is in the orbit of the curve $\left((-1)^{m} m, m-1\right)$. From now on, we assume that $q-2$ curves $\left(A_{i}, B_{i}\right)$, $1 \leqq i \leqq q-2$, are non-singular and the last curve $\left(\mathrm{A}_{q-1}, B_{q-1}\right)=\left((-1)^{n} m\right.$, $m-1$) is singular.

We now consider the sum

$$
\begin{equation*}
S_{f_{q-1}}=\sum_{x \in k} \chi\left(f_{q-1}(x)\right), \quad f_{q-1}(x)=x^{m}+(-1)^{m} m x+(m-1) \tag{5.1}
\end{equation*}
$$

First, note the factorization:
(5.2) $f_{q-1}(x)=(x-e)^{2} h(x)$, where $e=1$ if m is odd, $e=-1$ if m is even

$$
\text { and } h(x)=x^{m-2}+2 e x^{m-3}+3 x^{m-4}+\cdots+(m-2) e x+(m-1)
$$

Therefore, we have

$$
\begin{equation*}
\mathrm{S}_{f q-1}=S_{h}(\chi)-\chi(h(e)), \quad h(e)=(1 / 2) m(m-1) \neq 0 \tag{5.3}
\end{equation*}
$$

Since χ is of exponent d and $(d, m-2)=1$, by the well-known result (Theorem 2C on p. 43 of [1]) we have

$$
\begin{equation*}
\left|S_{h}(\chi)\right| \leqq(m-3) \sqrt{q} \tag{5.4}
\end{equation*}
$$

On the other hand, call $f(x)=x^{m}+A x+B$ one of the $f_{i}(x)$'s, $1 \leqq i \leqq q-2$, such that $\left|S_{f}\right|=\inf \left|S_{f_{i}}\right|$. Then, from (4.5), (5.3), (5.4), we get

$$
\begin{align*}
\sigma_{\mathrm{V}}^{* *} & \geqq(q-2)\left|S_{f}\right|^{2}+\left|S_{f_{q-1}}\right|^{2} \geqq(q-2)\left|S_{f}\right|^{2}+\left(\left|S_{h}(\chi)\right|-1\right)^{2} \tag{5.5}\\
& \geqq(q-2)\left|S_{f}\right|^{2}-2\left|S_{h}(\chi)\right|+1 \geqq(q-2)\left|S_{f}\right|^{2}-2(m-3) \sqrt{q}+1,
\end{align*}
$$

3) When $\Delta(A, B)=0$, the point $\left((-1)^{m} m B /(m-1) A, 0\right)$ is the only singular point of the affine curve $y^{d}=x^{m}+A x+B$.
which implies that

$$
\begin{equation*}
\left.\left|S_{f}(\chi)\right| \leqq \sqrt{\frac{\sigma_{\mathrm{v}}^{* *}+2(m-3) \sqrt{q}-1}{q-2}} .4\right) \tag{5.6}
\end{equation*}
$$

Note that $\sigma_{V}^{* *} \leqq q^{2}$ since $\delta^{\prime}, \delta^{\prime \prime} \geqq 1$ and that $q-2 \geqq q / 3, q^{3 / 2}>3$ since $q \geqq 3$. On substituting the values of $\sigma_{V}^{* *}$ of (4.6) in (5.6) we obtain the inequality (0.3) of Theorem.

References

[1] Schmidt, W. M.: Equations over finite fields. Lect. Notes in Math., vol. 536, Springer-Verlag (1976).
[2] Ono, T.: On certain numerical invariants of mappings over finite fields. I. Proc. Japan Acad., 56A, 342-347 (1980).

[^0]
[^0]: 4) (5.6) is a generalization of (I.3.30).
