26. On Certain Numerical Invariants of Mappings over Finite Fields. V

By Takashi Ono

Department of Mathematics, Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1981)

Introduction. This is a continuation of our paper [2] which will be referred to as (I) in this paper.¹⁾ Let k be a finite field with q elements: $k=F_q$, χ be a non-trivial character of the multiplicative group k^{\times} (extended by $\chi(0)=0$) and f be a function $k \rightarrow k$. We shall put $S_f(\chi) = \sum_{n \in I} \chi(f(x)).$

Consider the polynomial

(0.1) $f(x)=x^m+Ax+B$, $A, B \in k, m \ge 3$. Denote by $\Delta(A, B)$ the discriminant of f(x), i.e. (0.2) $\Delta(A, B)=(-1)^{m-1}(m-1)^{m-1}A^m+m^mB^{m-1}$. We assume that (q, m)=(q, m-1)=1. The purpose of the paper is to prove the following

Theorem. Let d be an integer ≥ 2 such that (q, d) = (d, m) = (d, m-2) = 1 and let χ be a non-trivial character of k^{\times} of exponent d. Then, there is a polynomial $f(x) = x^m + Ax + B$ with $A \neq 0$, $B \neq 0$, $\Delta(A, B) \neq 0$ such that

$$|S_t(\chi)| < \kappa \sqrt{q},$$

(0.4)

where $\kappa = \sqrt{3}$ if m = 3 and $\kappa = \sqrt{2(m-1)}$ if $m \ge 4$.

Remark 1. By the well-known theorem²⁾ we know that

 $|S_{t}(\chi)| \leq (m-1)\sqrt{q}$

for any polynomial f of degree m with (d, m) = 1.

Remark 2. When d=2, m can be any odd integer ≥ 3 and since there is only one quadratic character χ we have the relation

$$N=q+S_f(\chi),$$

where N denotes the number of solutions $(x, y) \in k^2$ of the equation (0.5) $y^2 = x^m + Ax + B.$

Therefore, our Theorem means that among hyperelliptic curves of type (0.5) with $A \neq 0$, $B \neq 0$, $\Delta(A, B) \neq 0$, there is a curve which satisfies the inequality

(0.6) $|N-q| < \kappa \sqrt{q}$ where $\kappa = \sqrt{3}$ if m=3 and $\kappa = \sqrt{2(m-1)}$ if $m \ge 5$ (m: odd). A similar remark can be made for the case d=3.

1) For example, we mean by (I.2.3) the item (2.3) in (I).

²⁾ See Theorem 2C on p. 43 of [1].

§1. Method of the proof. We first remind the reader the equality

(I.1.11) $\sigma_{F}(\chi) = q^{r-1}(q-1)\rho_{F}(\chi),$

where Y is a vector space over k of dimension r, F is a mapping from a finite set X into Y, χ is a non-trivial character of k^{\times} and $\sigma_F(\chi)$, $\rho_F(\chi)$ are invariants defined as follows. First, for a function $f: X \rightarrow k$, we write

(1.1)
$$S_f(\chi) = \sum_{x \in \mathcal{X}} \chi(f(x)).$$

Next, the mapping $F: X \to Y$ induces a function $F_{\lambda}: X \to k$ by $F_{\lambda} = \lambda \circ F$ for each linear form $\lambda \in Y^*$. We then put

(1.2)
$$\sigma_F(\chi) = \sum_{\chi \in Y^*} |S_{F\chi}(\chi)|^2.$$

Now, for non-zero vectors $u, v \in Y$, we write u || v when they are proportional to each other, i.e. when there is an $a \in k^{\times}$ such that v = au. In this situation, we write a = v : u. Finally, we put

(1.3)
$$\rho_F(\chi) = \sum_{(x,y) \in P} \chi(F(x) : F(y)),$$

where

(1.4)
$$P = \left\{ (x, y) \in k^2; F(x) \neq 0, F(y) \neq 0, F(x) || F(y) \right\}$$

Since we consider a fixed character χ of exponent *d*, we often write S_j , σ_F , ρ_F without χ .

To prove our Theorem, we first consider the case where X=k, $Y=k^3$ and $F(x)=(x^m, x, 1)$. Since F(x)||F(y) if and only if x=y, we have (1.5) $\rho_F=q$,

and, by (I.1.11), we get

(1.6)

 $\sigma_F = q^3(q-1).$

Identifying the linear form $\lambda \in Y^*$ with $\lambda = (\alpha, \beta, \gamma) \in k^s$ we can write $F_{\lambda}(x) = \alpha x^m + \beta x + \gamma$. We shall consider in Y^* the following five subsets :

$$\begin{split} &\Lambda_{\rm I} = \{\lambda = (\alpha, \beta, 0); \ \alpha, \beta \in k\}, \\ &\Lambda_{\rm II} = \{\lambda = (\alpha, 0, \gamma); \ \alpha, \gamma \in k\}, \\ &\Lambda_{\rm III} = \{\lambda = (\alpha, 0, 0); \ \alpha \in k\}, \\ &\Lambda_{\rm IV} = \{\lambda = (0, \beta, \gamma); \ \beta, \gamma \in k^{\times}\}, \\ &\Lambda_{\rm V} = \{\lambda = (\alpha, \beta, \gamma); \ \alpha, \beta, \gamma \in k^{\times}\} \end{split}$$

If we put

(1.7) $\sigma_j = \sum_{\lambda \in A_j} |S_{F_\lambda}|^2, \quad I \leq j \leq V,$

we have

(1.8) $\sigma_F = \sigma_I + \sigma_{II} - \sigma_{III} + \sigma_{V} + \sigma_{V}.$

Among these terms, we have $\sigma_{\text{III}} = \sum_{\alpha \in k} |\sum_{x \in k} \chi(\alpha x^m)|^2 = 0$ since χ is non-trivial and (d, m) = 1, and $\sigma_{\text{IV}} = \sum_{(\beta, \gamma) \in (k^{\times})^2} |\sum_{x \in k} \chi(\beta x + \gamma)|^2 = 0$ since $\beta \neq 0$. Therefore (1.8) becomes

(1.9)
$$\sigma_F = \sigma_I + \sigma_{II} + \sigma_{V}.$$

In the next two sections, we shall compute the first two terms of (1.9)

explicitly.

§ 2. Computation of
$$\sigma_{I}$$
. To find
(2.1) $\sigma_{I} = \sum_{(\alpha,\beta) \in K^{2}} |\sum_{x \in k} \chi(\alpha x^{m} + \beta x)|^{2},$

we use the equality (I.1.11) with X=k, $Y=k^2$ and $F(x)=(x^m, x)$. We see easily that

$$(2.2) F(x) || F(y) \Leftrightarrow y = ax, \quad a^{m-1} = 1, \quad x, y \in k^{\times}.$$

Put $\delta' = (m-1, q-1)$ and $\omega = g^{(q-1)/\delta'}$ where g is a generator of the cyclic group k^{\times} . Then we have the disjoint union

(2.3)
$$P = P_0 \cup P_1 \cup \cdots \cup P_{\delta'-1} \quad \text{with} \\ P_i = \{(x, \omega^i x), x \in k^{\times}\}, \quad 0 \leq i \leq \delta' - 1.$$

From this we have

$$\rho_F = \sum_{(x,y) \in P} \chi(F(x): F(y)) = \sum_{i=0}^{\delta'-1} \sum_{P_i} \chi(\omega^{-i}) = (q-1) \sum_{i=0}^{\delta'-1} \chi(\omega^{-i}),$$

and so

(2.4)
$$\rho_F = \begin{cases} \delta'(q-1), & \text{if } \chi(\omega) = 1, \\ 0, & \text{if } \chi(\omega) \neq 1. \end{cases}$$

Hence we have

(2.5)
$$\sigma_{I} = \begin{cases} \delta' q(q-1)^{2}, & \text{if } \chi(\omega) = 1, \\ 0, & \text{if } \chi(\omega) \neq 1. \end{cases}$$

§ 3. Computation of σ_{II} . To find

(3.1)
$$\sigma_{\mathrm{II}} = \sum_{(\alpha,\gamma) \in k^2} \left| \sum_{x \in k} \chi(\alpha x^m + \gamma) \right|^2,$$

we use the equality (I.1.11) with X=k, $Y=k^2$ and $F(x)=(x^m, 1)$. We see that

(3.2)
$$F(x) || F(y) \Leftrightarrow y^m = x^m, \quad x, y \in k.$$

Hence, when $x \neq 0$, there are $\delta'' y'$ s with $\delta'' = (m, q-1)$. If we put $\eta = g^{(q-1)/\delta''}$, then we have the disjoint union

(3.3)
$$P = \{(0, 0)\} \cup P_0 \cup P_1 \cup \cdots \cup P_{\delta''-1} \text{ with } P_i = \{(x, \eta^i x), x \in k^{\times}\}, \quad 0 \leq i \leq \delta'' - 1.$$

Since
$$\chi(F(x):F(y))=1$$
 for $(x, y) \in P$, we have
(3.4) $\rho_F=1+(q-1)\delta''$

and hence

(3.5)

$$\sigma_{II} = q(q-1)(1+(q-1)\delta'').$$

§4. σ_v , σ_v^* and σ_v^{**} . We consider here the most interesting sum

(4.1)
$$\sigma_{\mathbf{v}} = \sum_{(\alpha,\beta,\gamma) \in (k \times)^3} \left| \sum_{x \in k} \chi(\alpha x^m + \beta x + \gamma) \right|^2.$$

On putting

(4.2)
$$A = \frac{\beta}{\alpha}, \quad B = \frac{\gamma}{\alpha},$$

we have

(4.3)
$$\sigma_{\mathbf{v}} = (q-1)\sigma_{\mathbf{v}}^*$$
 with $\sigma_{\mathbf{v}}^* = \sum_{(A,B)\in(k^{\times})^2} \left|\sum_{x\in k} \chi(x^m + Ax + B)\right|^2$.
Let the group k^{\times} act on the set $(k^{\times})^2$ by the rule:

(4.4)
$$(A, B)t = (At^{m-1}, Bt^m), \quad t \in k^{\times}.$$

Clearly, the stability group at each point (A, B) is trivial and so each orbit consists of q-1 points and there are q-1 orbits in $(k^{\times})^2$. Since $\sum_{x \in k} \chi(x^m + At^{m-1}x + Bt^m) = \chi(t)^m \sum_{x \in k} \chi(x^m + Ax + B)$, if we call (A_i, B_i) , $1 \le i \le q-1$, representatives of orbits, we have

(4.5)
$$\sigma_{\mathbf{v}}^* = (q-1)\sigma_{\mathbf{v}}^{**} \text{ with } \sigma_{\mathbf{v}}^{**} = \sum_{i=1}^{q-1} |S_{f_i}|^2$$

where
$$f_i(x) = x^m + A_i x + B_i$$
.

From (1.6), (1.9), (2.5), (3.5), (4.3), (4.5), it follows that (4.6) $q(q+1-\delta'-\delta'')$, if $\chi(\omega)=1$,

(4.6)
$$\theta_{\chi} = \begin{cases} q(q+1-\delta''), & \text{if } \chi(\omega) \neq 1 \end{cases}$$

§ 5. End of the proof. Let $\Delta = \Delta(A, B)$ be the discriminant of x^m $+Ax+B, A\neq 0, B\neq 0$. By (0.2), it is clear that $\varDelta(A, B)=0$ if and only if $\Delta((A, B)t) = 0$ for all $t \in k^{\times}$. Hence the vanishing of Δ is a property of an orbit. We call an orbit singular (resp. non-singular) if it contains a point (A, B) such that $\Delta(A, B) = 0$ (resp. $\Delta(A, B) \neq 0$). As is easily verified, we have $\Delta(A, B) \neq 0$ if and only if the affine plane curve $u^{a} = x^{m} + Ax + B$ is non-singular.³⁾ There is always a singular orbit, say, the one which contains the point $((-1)^m m, m-1)$. We claim that there is only one singular orbit. In fact, assume that $\Delta(A, B)$ $= (-1)^{m-1}(m-1)^{m-1}A^m + m^m B^{m-1} = 0.$ Then, a simple computation shows that $(A, B) = ((-1)^m m, m-1)t$ with $t = (-1)^m m B/(m-1)A$, which means that every singular curve is in the orbit of the curve $((-1)^m m, m-1)$. From now on, we assume that q-2 curves (A_i, B_i) , $1 \leq i \leq q-2$, are non-singular and the last curve $(A_{q-1}, B_{q-1}) = ((-1)^m m,$ m-1) is singular.

We now consider the sum

(5.1)
$$S_{f_{q-1}} = \sum_{x \to 0} \chi(f_{q-1}(x)), \quad f_{q-1}(x) = x^m + (-1)^m m x + (m-1).$$

First, note the factorization:

(5.2) $f_{q-1}(x) = (x-e)^2 h(x)$, where e=1 if m is odd, e=-1 if m is even and $h(x) = x^{m-2} + 2ex^{m-3} + 3x^{m-4} + \cdots + (m-2)ex + (m-1)$.

Therefore, we have

(5.3) $S_{f_{q-1}} = S_h(\chi) - \chi(h(e)), \quad h(e) = (1/2)m(m-1) \neq 0.$

Since χ is of exponent d and (d, m-2)=1, by the well-known result (Theorem 2C on p. 43 of [1]) we have

(5.4) $|S_{h}(\chi)| \leq (m-3)\sqrt{q}$. On the other hand, call $f(x) = x^{m} + Ax + B$ one of the $f_{i}(x)$'s, $1 \leq i \leq q-2$, such that $|S_{f}| = \inf |S_{f_{i}}|$. Then, from (4.5), (5.3), (5.4), we get (5.5) $\sigma_{v}^{**} \geq (q-2)|S_{f}|^{2} + |S_{f_{q-1}}|^{2} \geq (q-2)|S_{f}|^{2} + (|S_{h}(\chi)| - 1)^{2}$ $\geq (q-2)|S_{f}|^{2} - 2|S_{h}(\chi)| + 1 \geq (q-2)|S_{f}|^{2} - 2(m-3)\sqrt{q} + 1$,

³⁾ When $\Delta(A, B)=0$, the point $((-1)^m mB/(m-1)A, 0)$ is the only singular point of the affine curve $y^d = x^m + Ax + B$.

No. 2]

which implies that

(5.6)
$$|S_{f}(\chi)| \leq \sqrt{\frac{\sigma_{\nabla}^{**} + 2(m-3)\sqrt{q} - 1}{q-2}} \cdot \sqrt[4]{q-2}$$

Note that $\sigma_{v}^{**} \leq q^2$ since δ' , $\delta'' \geq 1$ and that $q-2 \geq q/3$, $q^{3/2}>3$ since $q \geq 3$. On substituting the values of σ_{v}^{**} of (4.6) in (5.6) we obtain the inequality (0.3) of Theorem.

References

- Schmidt, W. M.: Equations over finite fields. Lect. Notes in Math., vol. 536, Springer-Verlag (1976).
- [2] Ono, T.: On certain numerical invariants of mappings over finite fields. I. Proc. Japan Acad., 56A, 342-347 (1980).