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On the Boundedness and the Attractivity Properties
o Nonlinear Second Order Differential Equations

By Sadahisa SAKATA*) and Minoru YAMAMOT0**)

(Communicated by K.Ssaku Y0SID-, M. d. A., Feb. 12, 1981)

1. Introduction. In this paper we consider the boundedness
and the attractivity properties o the forced second order nonlinear
nonautonomous differential equation

( 1 ) (a(t)x’)’+ h(t, x, x’)-q(t)f(x)g(x’)--e(t, x, x’).
In [2], J. R. Grae and P. W. Spikes discussed the same problems

as above, under some conditions. The condition described in [2] on
the perturbed term e(t, x, x’) implies e(t, x, x’)----O if q(t) is independent
of t. On the other hand, in [1], T.A. Burton considered the same
problems as above or the equation

( 2 ) x"+f(x)h(x’)x’- g(x)-- e(t)
under some conditions.

For the equation (1) our results are strict extensions of those
obtained in [2].

The attractivity result of Theorem 2 that obtained in [1] is a
special case o our result.

2. Theorems. First, we consider the boundedness of solutions
o the equation

( 1 ) (a(t)x’)’-h(t, x, x’)-q(t)f(x)g(x’)--e(t, x, x’)
or an equivalent system of equations

(3) x’=y, y’= 1
a(t) (--a’(t)y--h(t, x, y)-q(t)f(x)g(y)-e(t, x, y)}.

Assumption A1. ( I ) a(t) and q(t) are continuously differen-
tiable, positive functions in I----[O, -c),

(II) f(x) is a continuous function in R which satisfies

(III) g(y) is a continuous, positive function in R1,
(IV) h(t, x, y) and e(t, x, y) are continuous functions in I R and

h(t, x, y) satisfies the inequality yh(t, x, y)O in IR2.
We shall define a’(t)+=max(a’(t), 0} and a’(t)_=max(-a’(t), 0} so

that (t)--a’(t)+-a’(t)_. We also define the unctions F(x) and G(y)

by F(x)=; f(u)du and G(y)=S: (v/g(v))dv.
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Theorem 1.
ditions hold.

(4)

(5)
(6)

fying

Suppose that Assumption A and the following con-

y/g(y)<=MG(y) in ly]>=k for some constants MO and k>=O.
There exists a continuous, nonnegative function r(t) satis-

[e(t, x y)l< a(t)lq’(t)l +r(t) and r(t)dt<c.
Mq(t)

Then all solutions of (1)are bounded.
If, in addition, the functions G(y) and q(t) satisfy the condition
(7) G(y)--.o as lyl-+o and q(t)q for some constant q, then

all solutions of (3)are bounded.
Remark 1. From (4), there exist positive constants a, a and q

such that aga(t)a and qq(t) in I, because

a(t) a(0)exp{ a’(s) ds}> a(0)exp{-; a’(s)_ ds} a,
a(s)

a(t)<a(O)exp{I; a’(s)+ ds}=a
and q(t)>q(O)exp{--: q’(s)_ ds}= q.

Condition (III) in Assumption A implies that condition (5) is equiva-
lent to the ollowing condition"

( 5 )’ There exists a constantM’0 such that y/g(y)gM’G(y) inR
Moreover it follows from condition (5) that y]/g(y)gm+MG(y) and
y/g(y)gm’+MG(y) in R or some positive constants m and m’.

Proof of Theorem 1. Since condition (II) implies that F(x)
as x, there exists a real number F0 satisfying the inequality
F(x)+FoO or arbitrary x in R. Let

[ q(t). (N() +Po)+G()+

.exp{_I2 a’(s)_ ds+ 2 Ii q’(s)_ ds}q(s)
and differentiate V(t) V(t, x(t), y(t)) with respect to t for any solution
(x(t), y(t)) of (3), then we have or any t0,

V’(t)< a’(t)+ + ]q’(t),,. q(t) .(F(x)+Fo)+ --+2a(t q(t) a(t) a(t) q(t)
’(t) _h(t,z,)+a(v)+
(t() (t(v

exp(--fo a’(s)_ ds+2Ito q’(s)_ ds}a(s) q(s)

{-- q(t)
+M a’(t)_) +2 q’(t)_ +r(t)V(t)q(t) a
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+ (m’ a’(t)__() + 2mq’(t)_ am r(t)} exp {2 fl q’(8)__ ds}
This gives the ollowing inequality"

{ a’(s)_ 2mq’(s) + m r(s)}V(t)< V(to) + m’
co a(s) + Mq(s)

exp(2 : q’(r)_ dv}ds+:o (-[q’(s)[+M a’(s)_
q(r) q(s) a(s)

+2 q’(s)_ + M_M__ r(s))V(s)ds or
q(s) a

From (4), (6) and Gronwall’s lemma, we obtain

V(t)<__ Iv(t0)+o {m’ a’(s)__ + 2mq’(s)_Mq(s) + m___a r(s)}ds
exp{2: q’(s)_ ds}].exp[o{ Iq’(s.),.....+M a’(s)_

q(s) q(s) a(s)
2q’(s)_ M+ q(s-------A- r(s)J_ldS

cl.exp
q’(s) A-M a’(s)_ q’(s)_ + M r(s) ds

__<c. exp[: {M a’(S)_a(s___+ q’(S)_q(s___ -+- M-M-r(s)}ds] q(to)q(t)
<: cq(t) /or t >__ to.

Therefore it ollows that

F(x(t))<V(t).a(t) exp[: { a’(s)___:__ _2 q’(s)_ }ds]q(t) a(s) q(s)

<ca exp{: a’(s)_ ds}
and

{ a’(s)_ ds}. q(t) for t_>_t0.G(y(t))g c. exp
a(s)

The conclusions of Theorem 1 ollow rom (II) and (7). Q.E.D.
Corollary 1. Suppose that Assumption A, condition (6) and the

following conditions hold.

(8) a’(t)>0, [ q’(t)_ dr<co and a(t)<a for some a>0.
q(t)

(9) lyl/g(y)m+MG(y) in R /or some positive constants m
and M.
Then all solutions of (1) are bounded.

If, in addition, the functions G(y) and q(t) satisfy condition (7),
then all solutions of (3)are bounded.

Next, we consider the attractivity properties o the equation
(10) (a(t)x’)’

or an equivalent system of equations
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(11) X’--y,
y,_=. .1 .(--a’($)y--p($)f(x)g(y)y--q(t)f.(x)g.(y)x q- e($ x, y)).

()
Assumption A. ( I ) a(t) and q(t) are continuously differen-

tiable, positive functions in I-[O, q-oo),
( V ) p($) is continuous in I and satisfies p<_p(t)p for some

positive constants p and
( VI f(x) andf(z) are continuous, positive functions in R and

( VII ) 9() ed .(V) ae eotio, oitive etio , R

g(y) satisfies y dy=
Jo g.(y)

(VIII) e(t, x, y) is a continuous function in I R.
We define the unction Go(y) by Go(y)- v dr.

jo glv)
Theorem 2. Suppose that Assumption A. and the following con-

ditions hold.

a(t) q(t)
(13) y/g.(y) gMGo(y) in lyl>=k for some constants MO and
(14) There exists a continuous nonnegative function r(t) such that

le(t, x, y)l<=r(t) in IR and .[ r(t)dt
Then every solution of (11) approaches (0, O) as t--c.
We require the ollowing lemma to prove Theorem 2.
Lemma 1. Consider the system of differential equations
(S) x’= f(t, x), f e C[I D] where D={x e

If there exists a Liapunov function U(t, x) such that
( i ) U e C[ID],
(ii) a. Ilxll<= U(t, x) where a is a positive constant,
(iii) U)<=-U+r(t) where is a positive constant, r e C[I],

(t)> O, (t)d< c and U, -+f- grad U,

then every solution, defined in the future in D, approaches the oigin
as

Proof of Lemma 1. Let x(t)be a solution of (S) which stays in
D for tto and let U(t)= U(t, x(t)). Then from (iii) we have that

U(t)< U(to)e--+ e--"()d or t>__t0.

This inequality and condition (ii) imply that

]]x(t)]]l U(to)e--+ e-(t-)r(s)ds -.0 as t-.oo.

Therefore x(t) approaches the origin as t-oo. Q.E.D.
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Proof of Theorem 2. From condition (12) there exist positive
constants a, a., q and q. satisfying a,<=a(t)<=a and q<__q(t)q in I.
Therefore the boundedness of solutions of (11) is an immediate con-
sequence of Theorem 1. Then or each solution (x(t), y(t)) defined in
[to, c) of (11), there exists a positive constant K such that

K ortto. Now we define F(x)=_[: f(u)du, F(x)=_l:ufi.(u)du,
G;(y)=f:ldv and G(y)=LGo(y)--{G(y)} where L is a positive

g(v)
constant to be determined later. Conditions (VI) and (VII) imply that

(15) cgf(,x)c, c=f.(x)<:c, c=g(y)<:c and cgg.(y)=c in
Ixi+lyl<:K for some positive constants c, c, ..., c. Let

1 {F(x) -- G(y)}-t- L F(x) -t- 1 G(y)V(t, x, y)-
2q(t) a(t)

for t e I, Ixl+lyl<:K, then we have

V(t, x, y)> L F.(x)+. 1 ...G2(y)> c,L x2+1( L 1
a(t) q(t) 2a. q. 2c8 2c

or L large enough. Differentiating V(t)_V(t, x(t), y(t)) with respect
to t or any solution (x(t), y(t)) of (11), we obtain

V’(t)- q’(t) {Fi(x)Gl(y)}_ t a’(t)Fl(x)y
2q(t) q ).f(x)y{F(x)+ G(y)}

a(t)q(t)g(y)
P(t) F(x)f(x)y_F(x)f2(x)g.(Y)x_ia’(t)F.(x)

a(t)q() a(t)g(y) a(t)
e(t, x y)q’(t) G(y) La’(t)Y LP(t)f(x)g(Y)Y +q(t) a(t)q(t)g.(y) a(t)q(t)g(y) a(t)q(t)

Lp(t)f(x)g(y) yp(t)f(x) [F(x)yl-- f.(x)g.(y) xF(x)--+ a(t)q(t) a(t)g(y) a(t)q(t)g(y)
From (15), we obtain ]F(x)ylgc.]xyl, yG(y)<=(1/c)y and xF(x)>=cx
in lx]+ly]gK. We can also choose L so large that

gG(y),c yO,
g(y)

g(y) g(y) c c
+ } ir (x)ul+ f (x)

a(t) q(t) q(t) a(t)g(y)
Lp(t)f(x)g(y) y< _c(x+y)
a(t)q(t)g(y)
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and Co(X-t-y)<V(t, x, y)_c(x+y) in ]xl/lyl<=K for some positive
constants c, c0, c. It is easy to show that IF(x)yl/g(y)<(c./2c)K
in lxl+ IY]<:K. Thus we have the estimates

a’(t)_ cKV’(t)< q’(t)_ V(t)+(l+L) V(t)+.-) a(t) 2cq a(t)

_+
C/

[( ]<L q’(t____) + a’(t)_._V(t)_t_Wr(t) _c(xWy.)
q(t) a(t) ) a(t)

for some constant L0. Define

W(t, x, y)= V(t, x, y).exp[_Lli { q’(S)_q(s__+ a’(S)_a(s) }dsl’
then we obtain

[ I:{W(t, x, y)>cl0.exp -LI q’(s---) -t- ds .(x2+y2)
q(s) a(s)

and
a’(s)_ ds]W’(t)<{L(a’(t) _t_r(t))_cg(x2__y)}exp[_L:( q’(s)_ }a(t-- q(s) -(

where W(t, x(t), y(t)) for any solution (x(t), y(t)) of (11). We will use
Lemma 1 to complete the proof o Theorem 2. Q.E.D.

Remark 2. If we replace condition (6) by the following condition"

(6)’ ]e(t,x,y)] a(t)lq’(t)] +r(t)+r(t)lyl, fr(t)dt<c (i=1 2),
Mq(t)

then the same conclusions as those of Theorem I and those of Corollary
1 are valid.

Remark 3. If we replace condition (14) by
(14)’ le(t, x, y)l<=r(t)+r(t)lyl, [ r(t)dt< o (i=1, 2),

then the same conclusion as that of Theorem 2 is valid.
Remark 4. If we replace condition (14) by
(14)" le(t, x, y)]<=r(t)+rz(t)[xl+r(t)]yl, [[r(t)dt< (i=1, 2, 3),

and we assume that f(x)>_e>0 in R and either that y/g(y)gMGo(y),
g(y)>=$>0 in R or that [yl/g(y)<__M/Go(y), g(y)<=, in R, then the
same conclusion as that of Theorem 2 is valid.

The proofs of these results are analogous to that of J. W. Heidel
[3] and will be published later.
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