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24. On the Boundedness and the Attractivity Properties
of Nonlinear Second Order Differential Equations

By Sadahisa SAKATA*) and Minoru YAMAMOTO**)

(Communicated by Kosaku Yosipa, M. J. A., Feb. 12, 1981)

1. Introduction. In this paper we consider the boundedness
and the attractivity properties of the forced second order nonlinear
nonautonomous differential equation

(1) @®zY+h@E, z, 2)+q@) f(x)g(x)=e(t, z, 2').

In [2], J. R. Graef and P. W. Spikes discussed the same problems
as above, under some conditions. The condition described in [2] on
the perturbed term e(t, x, 2') implies e(¢, x, ) =0 if ¢(¢) is independent
of £. On the other hand, in [1], T. A. Burton considered the same
problems as above for the equation

(2) 2"+ f@)h(x)x’'+ g(x)=e(t)
under some conditions.

For the equation (1) our results are strict extensions of those
obtained in [2].

The attractivity result of Theorem 2 that obtained in [1] is a
special case of our result.

2. Theorems. First, we consider the boundedness of solutions
of the equation

(1) (a®xY+n, z, 2)+q@) f(@9x)=e(t, x, x)
or an equivalent system of equations

(3) @'=y, y'=5z1z)—{—a/(t)y—h(t, 2, Y — O @)9W)+elt, @, V).

Assumption A;. (I) a(t) and q(t) are continuously differen-
tiable, positive functions in I=[0, + o),

(II) f(x) is a continuous function in R* which satisfies

J:w J@dx=+ oo,

(IID) g(y) is a continuous, positive function in R,

av) &, z, y) and e(t, x, y) are continuous functions in I X R* and
h(t, x, y) satisfies the inequality yh(t, x, y)=0 in I X R*.

We shall define ¢/(t), =max{a/(¢), 0} and ¢'(¢t).=max{—a'(t), 0} so
that ¢/(H)=a/(t), —a/(t).. We also define the functions F(x) and G(y)

by F(x)=£: S(w)du and G(y)=j: (v/g()dv.
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Theorem 1. Suppose that Assumption A, and the following con-
ditions hold.
4 J‘w la/(t)l dt , “ q/(t)- dt .
W), Tag W< )T ¥
(5) v/9WEMGW) in |y|=k for some constants M >0 and k=0.
(6) There exists a continuous, nonnegative function r(t) satis-
fying

a(®)] ¢ (®)] . -
et 2, 9| E T +r(®) and j HE)dt< oo.

Then all solutions of (1) are bounded.
If, in addition, the functions G(y) and q(t) satisfy the condition
(7) Gy)—co as |yl—>oc and q(t)<q. for some constant q,, then
all solutions of (8) are bounded.
Remark 1. From (4), there exist positive constants a,, a, and q,
such that a,<a(f)<a, and q,<q(¢) in I, because
a(t)=a(0) exp{f o) ds} =>a(0) exp{ —J: @'(s). ds} =a,,

o a(s) a(s)

a(t) < a(0) exp{f % ds} =a,

and q(t)zq(O)exp{- : q;((?)- ds}=q1.

Condition (III) in Assumption A, implies that condition (5) is equiva-
lent to the following condition :

(5) Thereexists a constant M’ >0such that y*/g(y) <M'G(y) in R".
Moreover it follows from condition (5) that |y|/g9(y) <m-+MG(y) and
¥ /gy <m +MG(y) in R' for some positive constants m and m/'.

Proof of Theorem 1. Since condition (II) implies that F(x)—
as |x|—>co, there exists a real number F, satisfying the inequality
F(x)+F,=0 for arbitrary x in R*. Let

t) m
V(t, =, =[L-F F)+G _]
t, z, v) old) F(@)+F)+Gy)+ T,
.exp{_jt a/’(-S')_ d8+2 ¢ Q’(S)_ dS}
o a(s) o q(s)
and differentiate V(£)=V (¢, x(t), y(t)) with respect to ¢ for any solution
(x(t), y(t)) of (8), then we have for any ¢>0,
/ ‘@), o, 19O, a@® a/'(t)- q'(t)-
vis|(- L0 L 10OL). 1D ) p)+ (- +2. 00 )
at)  qt) / a®) ’ al?) q(t)
~<G(y) Lm )_ od@y _ yh(t, x,y) | ye(t, x, y)]
M a(t)g(y) a(®)g(y) a(t)9(y)
.exp{ _J‘ @) g1 o[ 46 ds}
o a(s) o q(s)

(O gy O Lyt , M
§{ o M e TP T T(t)}v(t)
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(). 2mg'(t). | m © q'(s)-
m —r(t 21 2222-ds
Ho o g a0 e {26 }
This gives the following inequality :

t , (8. |, 2mq'(s). , m
VL V() + j {m e 2 +ET’"(S)}

i 4@ 4 G a’(s).
exp{2 0 q(r) } +\[ { q(s) a(s)
+2q(;((—'i))“+—a——¢(s)}V(s)ds for t=1,>0.

From (4), (6) and Gronwall’s lemma, we obtain

>f ,a(s). , 2mqg'(s). , m
V(t)g[V(to)ﬁujm {m R T +7‘¢(s>}ds

-exp{2 ERAOE ds}].exp[Lo{ 19'()] +M a'(s)-

o q(s) q(s) a(s)
e )
o] 8 50 03 e
s (e ] g0

=cq(?) for t>t,.
Therefore it follows that

Fa@) <V 28 epr o{ @(s). g '(5). }ds]

q(®) a(s) q(s)
= a’'(s).
<c,0, exp{f0 7(;)— ds}
and
Gt)< e, exp([ %ds}-q(t) for t=1,.
The conclusions of Theorem 1 follow from (II) and (7). Q.E.D.

Corollary 1. Suppose that Assumption A,, condition (6) and the
following conditions hold.

(8) a(t)=0, J Q((?)“ dt<<oo and a(t)<a, for some a,>0.

(9) |yl/9wEm+MG(y) in R' for some positive constants m
and M.
Then all solutions of (1) are bounded.

If, in addition, the functions G(y) and q(t) satisfy condition (7),
then all solutions of (3) are bounded.

Next, we consider the attractivity properties of the equation

10) (a®2Y +p@®)f1(2)g,(x)2’' 4 q(®) f(2)9(x)x=e(t, 2, 2')
or an equivalent system of equations
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1y o __y,
=ﬁ)«{ o' By —p@) fi(@2) 9.y — o) fL2)9:(n)x + e(t, z, )}

Assumption A,. ( I ) ) and q(t) are continuously differen-
tiable, positive functions in I=[0, -+ o),

( V) p(@) is continuous in I and satisfies p,<p(t)<p, for some
positive constants p, and p,,

( VI) fi(x) and f(x) are continuous, positive functions in R and
Fu(x) satisfies I*m o f@)duw=+ oo,

0

(VII) 9,(w) and g.(y) are continuous, positive functions in R' and

9:(y) satisfies .[im dy=+ oo,
o gy(y)
(VIID) e(t, x, ¥) 18 a continuous function in I X R?.
We define the function G,(y) by G.)(y)=r ’ 7(’@) dv.
0 gy

Theorem 2. Suppose that Assumption A, and the following con-
ditions hold.

(12) I la(t)| dt<oco and J lq/((:)” dt< oo.

13 v/ gz(y)gM G (y) in|y|=Fk for some constants M >0 and k=0.

(14) There exists a continuous nonnegative function r(t) such that

|e(t, @, )| <7(®) in IXR* and r HB)dt < oo.
0

Then every solution of (11) approaches (0, 0) as t—co.
We require the following lemma to prove Theorem 2.
Lemma 1. Consider the system of differential equations
®) 2/'=fQE, x), feClXD]where D={xecR"||z|<K]}.
If there exists a Liapunov function U(t, x) such that
(i) UeCUUxD],
(ii) ea-|2|PS U, ) where a is a positive constant,
(iii)) U< —2U+7r(t) where 21s a positive constant, r € C[I1,

71)=0, j r)dt<co and U(s)——+ f-grad U,

then every solution, defined in the fulure in D, approaches the origin
a8 t—oo.

Proof of Lemma 1. Let 2(f) be a solution of (S) which stays in
D for t=t, and let U(t)=U(t, #(t)). Then from (iii) we have that

U(t)gU(to)e““"“’+r e *¢=9p(s)ds for t=t,.
This inequality and condition (iit; imply that
el L {vte v+ [ eo-onsyds)—0 as toco.
Therefore x(f) approaches the origin as t—oo. Q.E.D.
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Proof of Theorem 2. From condition (12) there exist positive
constants a,, a,, ¢, and g, satisfying a,<a(t)<a, and ¢, <q(t)<q, in I.
Therefore the boundedness of solutions of (11) is an immediate con-
sequence of Theorem 1. Then for each solution (x(t), ¥(t)) defined in
[t,, o) of (11), there exists a positive constant K such that |x(t)|+|y(f)]

<K for t=t, Now we define F(x)= j Fiwdu, F(x)= f:ufz(u)du,

Gl(y)=r 1 v and Gz(y)——-LGo(y)—l{Gl(?/)}2 where L is a positive
o g,(v) 2

constant to be determined later. Conditions (VI) and (VII) imply that
15) =fiw)=c, < fi@)=c, :<g(¥)<c, and ¢;<g(y)<¢, in
|2|+|y|< K for some positive constants ¢,, ¢;, - -+, ;. Let
1 L 1
14 t, ’ =——_{F G 2 F ———G
@, 2, v) RG) {F.(@)+G )Y+ e L)+ o) )
for te I, |x|+|y|< K, then we have
L 1 c,L 1/ L 1
Vit, @, =L F o)+ L Gy=SL o _(__—_) >0
&z, )= o %)+ «® A= 20, x4 e T 2a Y=
for L large enough. Differentiating V($)=V (¢, x(t), y(t)) with respect
to ¢t for any solution (2(¢), y(¢)) of (11), we obtain

V)= —- L0 (F @G+ L S @UF@) +6 () —- L@

2q(t)* q(t) a(t)a@®)g,(y)
__p® g _ F@)f@)g(px _ La'(t) p
OO a(Hg.(v) oy 1A
_9® & () — Lo'(tyy*  _ Lp®)f®)g:()y* | e, x, v)
q@®* " a®a®)g(y) a(t)q(t)9.(y) a(t)q(t)
Fl(x) Ly < q/(t)— 1 F G 2 i G
x{ o g2(y>}— ) [2q<t){ @+ EWF+ ol wl]
@) [|F@yl | L g Ly
«® La@am e OF q(t)gz(y)}

) [I1F@)| , Lly|\, fi®) np c

() f(x) F _ JA®)g(¥y) F _ Lp(t) f(x)9.(y) 2,
D0 TN e O T athag
From (15), we obtain |F(x)y|< c.|2y|, yG, () =1 /c)y* and oF(2) = c,a’
in |z|+|y|<K. We can also choose L so large that

Gz(w;(-clie—-cl?)yzo, gf@) <Gyy),
%”“))—‘+—;’;‘(yy—l§§:|wl+%|y|g(c—z+%)K,

{14+ 2OV a1+ L8 46.0) - L9 P ()
T i
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and c (2’ +yHSV(E, 2, Y <en(@*+y?) in |2|+|y|< K for some positive
constants ¢, ¢y, ¢,;. It is easy to show that |F (x)y|/9:(y) <(c,/2¢:)K?
in |z|+|y|<K. Thus we have the estimates

Vi) =L vy 1 4+0) LB- yy L oL @)

q(t) a(t) 2¢,q,  a(t)
+ K (fi+£)fr(t)—ce(w2+y2)
o Ne ¢

g@®). | a(t). a'(t)- (Pt o
ng[{ - 2 }V(t)+ s +r<t)] @+

for some constant L, >0. Define

W, z, y)=V({, x, y)- exp[—Llj; { q;(('z))“ + a;((i))“ }ds],

then we obtain
wt, , y);cw-exp[—Llr{ 7). | as). }ds]-(x2+y2)

o U q(s) a(s)
2nd ® (s) (s
, a/(t)_ Y 7 [ ). | ad(s)
W ={L( - +7(8)) — e+ Jexo| L [ { e yas].
where W(t, (1), ¥(?)) for any solution (x(?), y(¢)) of (11). We will use
Lemma 1 to complete the proof of Theorem 2. Q.E.D.

Remark 2. If we replace condition (6) by the following condition:
(6 et < XONCOL Lyt 1ty [ r(dt<oo i=1,2),
Mq(t) 0
then the same conclusions as those of Theorem 1 and those of Corollary
1 are valid.
Remark 3. If we replace condition (14) by

W) Jet, o, DISHO+r®lyl, [T ridt<eo (=1,2),
then the same conclusion as that of Theorem 2 is valid.

Remark 4. If we replace condition (14) by

A" lelt, 3, PISrO+n@lal+r @l [ rddt<co=1,2,3),
and we assume that f,()=¢>0 in R* and either that ¥*/g,(y) < MG (v),
9:(¥)=6>0 in R or that |y|/9. () SMVG(¥), 9(¥)<7y in R', then the
same conclusion as that of Theorem 2 is valid.

The proofs of these results are analogous to that of J. W. Heidel
[3] and will be published later.
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