22. Remarks on the Deficiencies of Algebroid Functions of Finite Order

By Tsuneo Sato
Department of Mathematics, Chiba University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1981)

1. Introduction. Edrei and Fuchs [1] established the following interesting theorem :

Theorem A. Let $f(z)$ be a meromorphic function of order $\lambda, 0$ $<\lambda<1$. Put

$$
u=1-\delta(0, f) \quad \text { and } \quad v=1-\delta(\infty, f), \quad 0 \leqq u, v \leqq 1 \text {, }
$$

where $\delta(a, f)$ denotes the Nevanlinna deficiency of a value a. Then we have

$$
u^{2}+v^{2}-2 u v \cos \pi \lambda \geqq \sin ^{2}(\pi \lambda)
$$

Further, if $u<\cos \pi \lambda$, then $v=1$; if $v<\cos \pi \lambda$, then $u=1$.
This beautiful and elegant theorem solves completely the problem of finding relations between any two deficiencies of a meromorphic function of order less than one. A little later, Edrei [2] showed that the order λ in the theorem may be replaced by the lower order μ.

Shea [4] obtained a result which concerns with the Valiron deficiency $\Delta(a, f)$ instead of $\delta(a, f)$. That is, he proved

Theorem B. Let $f(z)$ be a meromorphic function of order $\lambda, 0$ $<\lambda<1$, whose zeros lie on the negative real axis, and whose poles lie on the positive real axis. Put

$$
X=1-\Delta(0, f) \quad \text { and } \quad Y=1-\Delta(\infty, f)
$$

Then, when $1 / 2 \leqq \lambda<1$, we have

$$
X^{2}+Y^{2}-2 X Y \cos \pi \lambda \leqq \sin ^{2}(\pi \lambda)
$$

When $0<\lambda<1 / 2$, the above inequality still holds provided

$$
X \geqq \cos (\pi \lambda) \quad \text { and } \quad Y \geqq \cos (\pi \lambda)
$$

The purpose of this paper is to extend these theorems to n-valued algebroid functions of order less than one. Our results are as follows:

Theorem 1. Let $f(z)$ be an n-valued algebroid function of order $\lambda, 0<\lambda<1$, defined by the irreducible equation

$$
\begin{equation*}
A_{0}(z) f^{n}+A_{1}(z) f^{n-1}+\cdots+A_{n}(z)=0 \tag{1.1}
\end{equation*}
$$

where $A_{0}(z), A_{1}(z), \cdots, A_{n}(z)$ are entire functions without common zeros, and we suppose that 0 is not a Valiron deficient value for $A_{0}(z)$.

Let $a_{j}, j=1, \cdots, n$, be mutually distinct values, and put
(1.2) $\quad u_{j}=1-\delta\left(a_{j}, f\right) \quad$ and $\quad v=1-\delta(\infty, f), \quad 0 \leqq u_{j}, v \leqq 1$.

Then, there is at least one $a_{\nu}, 1 \leqq \nu \leqq n$, such that

$$
\begin{equation*}
u_{\nu}^{2}+v^{2}-2 u_{\nu} v \cos \pi \lambda \geqq n^{-2} \sin ^{2}(\pi \lambda) \tag{1.3}
\end{equation*}
$$

If $u_{\nu}<n^{-1} \cos \pi \lambda$, then $v \geqq 1 / n$; if $v<n^{-1} \cos \pi \lambda$, then $u_{\nu} \geqq 1 / n$.
Theorem 2. Let $f(z)$ be an n-valued algebroid function of order $\lambda, 0<\lambda<1$, whose poles lie on the positive real axis. Let $a_{j}, j=1, \cdots$, n, be mutually distinct values and put
(1.4) $\quad X_{j}=1-\Delta\left(a_{j}, f\right)$ and $Y=1-\Delta(\infty, f)$.

We suppose that zeros of $f(z)-a_{j}, j=1, \cdots, n$, lie wholly on the negative real axis. Then, when $1 / 2 \leqq \lambda<1$, we have

$$
\begin{equation*}
X_{j}^{2}+Y^{2}-2 X_{j} Y \cos \pi \lambda \leqq \sin ^{2}(\pi \lambda), \quad j=1, \cdots, n \tag{1.5}
\end{equation*}
$$

When $0<\lambda<1 / 2$, the same inequality still holds for some pair $\left(X_{\nu}, Y\right)$, provided

$$
\begin{equation*}
X_{\nu} \geqq \cos \pi \lambda \quad \text { and } \quad Y \geqq \cos \pi \lambda . \tag{1.6}
\end{equation*}
$$

2. Preliminaries. Let $f(z)$ and $a_{j}, j=1, \cdots, n$, be as in Theorem 1. Let $Y_{j}(z)$ be the j-th determination of $f(z), 1 \leqq j \leqq n$. Put

$$
\begin{aligned}
A(z) & =\max \left(1,\left|A_{0}(z)\right|, \cdots,\left|A_{n}(z)\right|\right), \\
g(z) & =\max \left(1,\left|g_{1}(z)\right|, \cdots,\left|g_{n}(z)\right|\right),
\end{aligned}
$$

in which $g_{j}(z)=A_{0}(z) a_{j}^{n}+A_{1}(z) a_{j}^{n-1}+\cdots+A_{n}(z)$, and

$$
\mu(r, A)=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \log A\left(r e^{i \theta}\right) d \theta
$$

Then, by a theorem of Valiron [6], we have

$$
\begin{equation*}
|\mu(r, A)-T(r, f)|=O(1) \tag{2.1}
\end{equation*}
$$

Ozawa [3] showed that

$$
\begin{equation*}
\mu(r, g)=\mu(r, A)+O(1) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{n} \log ^{+}\left|y_{j}(z)\right| \leqq \log \left|\frac{A(z)}{A_{0}(z)}\right|+O(1) \tag{2.3}
\end{equation*}
$$

We put $f_{j}(z)=g_{j}(z) / A_{0}(z)$. Then, by [5, p. 2, Prop. 4 (ii)], we have (using (2.1))

$$
\begin{equation*}
T\left(r, f_{j}\right)<n \mu(r, A)+O(1) \leqq n T(r, f)+O(1) \tag{2.4}
\end{equation*}
$$

from which we see that $f_{j}(z)$ are meromorphic functions of order at most λ.

Then, we have

$$
\begin{align*}
\sum_{j=1}^{n} T\left(r, f_{j}\right) \geqq & \sum_{j=1}^{n} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{g_{j}\left(r e^{i \theta}\right)}{A_{0}\left(r e^{i \theta}\right)}\right| d \theta+N\left(r, \frac{1}{A_{0}}\right) \tag{2.5}\\
\geqq & \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left(\max _{j}\left|g_{j}\left(r e^{i \theta}\right)\right|\right) d \theta \\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|A_{0}\left(r e^{i \theta}\right)\right| d \theta+N\left(r, \frac{1}{A_{0}}\right) \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \log g\left(r e^{i \theta}\right) d \theta-m\left(r, A_{0}\right)+N\left(r, \frac{1}{A_{0}}\right) \\
= & n \mu(r, g)-m\left(r, A_{0}\right)+N\left(r, 1 / A_{0}\right) \\
= & n \mu(r, g)-m\left(r, 1 / A_{0}\right)+O(1) .
\end{align*}
$$

Since 0 is not a Valiron deficient value for $A_{0}(z)$, we have

$$
\begin{equation*}
m\left(r, 1 / A_{0}\right)=o\left(T\left(r, A_{0}\right)\right)=o(\mu(r, A))=o(T(r, f)) \tag{2.6}
\end{equation*}
$$

By (2.1), (2.2), (2.5) and (2.6), we obtain

$$
\begin{equation*}
n T(r, f)<n \mu(r, A)+O(1) \leqq \sum_{j=1}^{n} T\left(r, f_{j}\right)+o(T(r, f)) \tag{2.7}
\end{equation*}
$$

3. Proof of Theorem 1. We make use of the techniques of Edrei-Fuchs [1]. Since each $f_{j}(z)=g_{j}(z) / A_{0}(z)$ is a function of order $\leqq \lambda<1$, we obtain as in [1, p. 239],

$$
\begin{equation*}
T\left(r, f_{j}\right) \leqq \int_{0}^{\infty} N_{j}(t, 0) P\left(t, r, \beta_{j}\right) d t+\int_{0}^{\infty} N(t, \infty) P\left(t, r, \pi-\beta_{j}\right) d t \tag{3.1}
\end{equation*}
$$

where

$$
P(t, r, \gamma)=\pi^{-1} r \sin \gamma /\left(t^{2}+2 t r \cos \gamma+r^{2}\right) \quad(0<\gamma<\pi)
$$

and $\beta_{j}=\beta_{j}(r)$ is a number such that $0<\beta_{j}<\pi . \quad N_{j}(t, 0)$ and $N(t, \infty)$ denote the counting functions of $1 / f_{j}(z)$ and $A_{0}(z)$, respectively.

By (3.1) and (2.7), we get

$$
\begin{aligned}
n T(r, f) \leqq & \sum_{j=1}^{n} \int_{0}^{\infty} n N\left(t ; a_{j}, f\right) P\left(t, r, \beta_{j}\right) d t \\
& +\sum_{j=1}^{n} \int_{0}^{\infty} n N(t ; \infty, f) P\left(t, r, \pi-\beta_{j}\right) d t
\end{aligned}
$$

Let U_{j} and V be such that $U_{j}>u_{j}$ and $V>v$. Then, by the definition of deficiency

$$
N\left(t ; a_{j}, f\right)<U_{j} T(t, f) \quad \text { and } \quad N(t ; \infty, f)<V T(t, f) \quad\left(t \geqq t_{0}\right) .
$$

As in [1, p. 240], we make use of the notion of Pólya peaks $\left\{r_{m}\right\}$. Then we deduce

$$
\begin{align*}
(1+ & o(1)) T\left(r_{m}, f\right) \leqq \sum_{j=1}^{n} U_{j} T\left(r_{m}, f\right)\left\{\int_{0}^{r_{m}}\left(\frac{t}{r_{m}}\right)^{\lambda-\varepsilon} P\left(t, r_{m}, \beta_{j}\right) d t\right. \tag{3.2}\\
& \left.+\int_{r_{m}}^{\infty}\left(\frac{t}{r_{m}}\right)^{\lambda+\varepsilon} P\left(t, r_{m}, \beta_{j}\right) d t\right\} \\
& +\sum_{j=1}^{n} V T\left(r_{m}, f\right)\left\{\int_{0}^{r_{m}}\left(\frac{t}{r_{m}}\right)^{\lambda-s} P\left(t, r_{m}, \pi-\beta_{j}\right) d t\right. \\
& \left.+\int_{r_{m}}^{\infty}\left(\frac{t}{r_{m}}\right)^{\lambda+\varepsilon} P\left(t, r_{m}, \pi-\beta_{j}\right) d t\right\}+\eta\left(r_{m}\right)
\end{align*}
$$

where $\eta\left(r_{m}\right)$ is a quantity such that $\eta\left(r_{m}\right)=O(1 / r)$.
Writing $t=s r_{m}$, we obtain

$$
\begin{aligned}
& \int_{0}^{r_{m}}\left(\frac{t}{r_{m}}\right)^{\lambda-s} P\left(t, r_{m}, \beta_{j}\right) d t+\int_{r_{m}}^{\infty}\left(\frac{t}{r_{m}}\right)^{\lambda+\varepsilon} P\left(t, r_{m}, \beta_{j}\right) d t \\
& \quad=\int_{0}^{\infty} s^{\lambda+\epsilon} P\left(s, 1, \beta_{j}\right) d t+\int_{0}^{1}\left(s^{\lambda-\epsilon}-s^{\lambda+\varepsilon}\right) P\left(s, 1, \beta_{j}\right) d s=\frac{\sin \beta_{j} \lambda}{\sin \pi \lambda}+\tau,
\end{aligned}
$$

where $0<s^{\lambda-\varepsilon}-s^{\lambda+\varepsilon}<\tau(0 \leqq s \leqq 1)$. Let $r_{m} \rightarrow \infty$ and then make (in this order) the transition to the limit $\varepsilon \rightarrow 0, \tau \rightarrow 0, U_{j} \rightarrow u, V \rightarrow v$. We argue similarly for the terms including $\pi-\beta_{j}$. Thus we get

$$
\begin{equation*}
1 \leqq \sum_{j=1}^{n} \max _{0 \leqq \beta_{j} \leqslant \pi}\left\{\left(u_{j} \sin \beta_{j} \lambda+v \sin \left(\pi-\beta_{j}\right) \lambda\right) / \sin \pi \lambda\right\} . \tag{3.3}
\end{equation*}
$$

Since $u_{j} \sin \beta_{j} \lambda+v \sin \left(\pi-\beta_{j}\right) \lambda$ is a continuous function of β_{j}, we can find γ_{j} for which the $\max _{0 \leq \beta_{j} \leq \pi}$ in (3.3) is attained. Hence

$$
\begin{equation*}
\sin \pi \lambda \leqq \sum_{j=1}^{n}\left\{u_{j} \sin \gamma_{j} \lambda+v \sin \left(\pi-\gamma_{j}\right) \lambda\right\} \leqq n\left\{u_{\nu} \sin \gamma_{\nu} \lambda+v \sin \left(\pi-\gamma_{\nu}\right) \lambda\right\} \tag{3.4}
\end{equation*}
$$ for a $\nu, 1 \leqq \nu \leqq n$. Thus

(3.5) $\sin ^{2} \pi \lambda \leqq n^{2}\left\{u_{\nu} \sin \gamma_{\nu} \lambda-v \sin \gamma_{\nu} \lambda \cos \pi \lambda+v \sin \pi \lambda \cos \gamma_{\nu} \lambda\right\}^{2}$

$$
\leqq n^{2}\left\{\left(u_{\nu}-v \cos \pi \lambda\right)^{2}+v^{2} \sin ^{2} \pi \lambda\right\}=n^{2}\left\{u_{\nu}^{2}+v^{2}-2 u_{\nu} v \cos \pi \lambda\right\},
$$

which proves the inequality in Theorem 1.
If $v<n^{-1} \cos \pi \lambda$, then from (3.5) we see that $\gamma_{\nu} \neq 0$, and by (3.4)

$$
\begin{aligned}
n u_{\nu} \sin \gamma_{\nu} \lambda & \geqq \sin \pi \lambda-\sin \left(\pi-\gamma_{\nu}\right) \lambda \cos \pi \lambda \\
& \geqq \sin \pi \lambda \cos \left(\pi-\gamma_{\nu}\right) \lambda-\sin \left(\pi-\gamma_{\nu}\right) \lambda \cos \pi \lambda \\
& =\sin \gamma_{\nu} \lambda, \quad u_{\nu} \geqq 1 / n .
\end{aligned}
$$

The case $u_{\nu}<n^{-1} \cos \pi \lambda$ is treated similarly.
4. Proof of Theorem 2. We follow the method of Shea [4]. Applying Shea's representation to meromorphic function $f_{j}(z)=g_{j}(z) /$ $A_{0}(z)$ and using (2.4), we have

$$
\begin{align*}
n T(r, f) \geqq & \int_{0}^{\infty} n N\left(t ; a_{j}, f\right) P\left(t, r, \beta_{j}\right) d t \tag{4.1}\\
& +\int_{0}^{\infty} n N(t ; \infty, f) P\left(t, r, \pi-\beta_{j}\right) d t-A \log r
\end{align*}
$$

with a suitable constant $A>0$ (see [4, p. 215]).
Let \bar{X}_{j}, \bar{Y} be such that $0<\bar{X}_{j}<X_{j}$ and $0<\bar{Y}<Y$. Then (4.2) $N\left(t ; a_{j}, f\right) \geqq \bar{X}_{j} T(t, f) \quad$ and $\quad N(t ; \infty, f) \geqq \bar{Y} T(t, f) \quad\left(t \geqq t_{0}\right)$

We argue as in [4, p. 216]. Let μ be the lower order of the algebroid function $f(z)$, and choose any positive number ρ such that $\mu \leqq \rho \leqq \lambda$, and let $\left\{r_{m}\right\}$ be a sequence of Pólya peaks of the second kind, of order ρ, for the function $T(r, f)$. Then we obtain by (4.1)

$$
\begin{aligned}
& T\left(r_{m}, f\right) \geqq \geqq \bar{X}_{j} T\left(r_{m}, f\right)(1+o(1)) \int_{s}^{s}\left(t / r_{m}\right)^{\rho} P\left(t, r_{m}, \beta_{j}\right) d t \\
&+\bar{Y} T\left(r_{m}, f\right)(1+o(1)) \int_{s}^{s}\left(t / r_{m}\right)^{\rho} P\left(t, r_{m}, \pi-\beta_{j}\right) d t-A \log r \\
& \quad(m \rightarrow \infty),
\end{aligned}
$$

where s and S run over the associated sequences $\left\{s_{m}\right\}$ and $\left\{S_{m}\right\}$ for $\left\{r_{m}\right\}$ [4, p. 208]. Making the change of variable $s=t / r_{m}$ and divided by $T\left(r_{m}, f\right)$, we get

$$
1+o(1) \geqq \bar{X}_{j} \int_{s_{m} / r_{m}}^{s_{m} / r_{m}} s^{\rho} P\left(s, 1, \beta_{j}\right) d s+\bar{Y} \int_{s_{m} / r_{m}}^{S_{m} / r_{m}} s^{\rho} P\left(s, 1, \pi-\beta_{j}\right) d s
$$

$$
(m \rightarrow \infty)
$$

Thus

$$
1 \geqq \bar{X}_{j} \int_{0}^{\infty} s^{\rho} P\left(s, 1, \beta_{j}\right) d s+\bar{Y} \int_{0}^{\infty} s^{\rho} P\left(s, 1, \pi-\beta_{j}\right) d s
$$

Evaluating these integrals and letting $\bar{X}_{j} \rightarrow X_{j}, \bar{Y} \rightarrow Y$, we obtain (4.3) $\quad \sin \pi \rho \geqq X_{j} \sin \beta_{j} \rho+Y \sin \left(\pi-\beta_{j}\right) \rho \quad(\mu \leqq \rho \leqq \lambda)$
for any $j, 1 \leqq j \leqq n$. (4.3) holds for any $\beta_{j}, 0<\beta_{j}<\pi$, but since the right hand side is continuous, (4.3) holds for $0 \leqq \beta_{j} \leqq \pi$.

We put $\rho=\lambda$ and $\beta_{j}=\lambda^{-1} \tan ^{-1}\left(\left(X_{j}-Y \cos \pi \lambda\right) /(Y \sin \pi \lambda)\right)$. Then
we obtain easily the inequality (1.5). We note that the supposition (1.6) insures that $0 \leqq \beta_{\nu} \leqq \pi$ when $\lambda<1 / 2$.

References

[1] E. Edrei and W. H. J. Fuchs: The deficiencies of meromorphic functions of order less than one. Duke Math. J., 27, 233-249 (1960).
[2] E. Edrei: The deficiencies of meromorphic function of finite lower order. ibid., 31, 1-21 (1964).
[3] M. Ozawa: Deficiencies of an algebroid function. Kodai Math. Sem. Rep., 21, 262-276 (1969).
[4] D. F. Shea: On the Valiron deficiencies of meromorphic functions of finite order. Trans. Amer. Math. Soc., 124, 201-227 (1966).
[5] N. Toda: Nevanlinna theory for systems of analytic functions. Tokyo Kodai Lecture Note (in Japanese).
[6] G. Valiron: Sur la dérivée des fonctions algébroides. Bull. Soc. Math. France, 59, 17-39 (1931).

