
No. 2] Proc. Japan Acad., 7, Ser. A (1981) 101

Remarks on the Deficiencies o Algebroid
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1. Introduction. Edrei and Fuchs [1] established the ollowing
interesting theorem"

Theorem A. Let f(z) be a meromorphic function of order , 0

1. Put
u=l--/(0, f) and v--1--(c, f), 0<_u, v<__l,

where (a, f) denotes the Nevanlinna deficiency of a value a. Then
we have

u +v-2uv cos >__ sin().
Further, if ucos u, then v-1; if vcos, then u--1.

This beautiful and elegant Cheorem solves completely the problem
of finding relations between any two deficiencies of a meromorphic
unction of order less than one. A little later, Edrei [2] showed that
the order in the theorem may be replaced by Che lower order/.

Shea [4] obtained a result which concerns with the Valiron defi-
ciency z/(a, f) instead o/t(a, f). That is, he proved

Theorem B. Let f(z) be a meromorphic function of order , 0
1, whose zeros lie on the negative real axis, and whose poles lie
on the positive real axis. Put

X=1-zl(O, f) and Y-= 1--zl(c, f).
Then, when 1/2_<_1, we have

X+y2--2XY COS <__sin().
When 01/2, the above inequality still holds provided

X=cos (u) and Ycos ().
The purpose of this paper is to extend these theorems to n-valued

algebroid functions of order less han one. Our results are as follows"

Theorem 1. Let f(z) be an n-valued algebroid function of order, 01, defined by the irreducible equation
(1.1) Ao(z)f+A(z)f-+... +A,(z)= 0,
where Ao(z), A(z),..., A(z) are entire /unctions without common
zeros, and we suppose that 0 is not a Valiron deficient value for Ao(z).

Let a, --1, ..., n, be mutually distinct values, and put
(1.2) u=l--/(a, f) and v=l--/(c, f), 0gu, vgl.
Then, there is at least one a, l=,n, such that
(1.3) u+v2--2uv cos 2>=n-2 sin(2).
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If un- cos z, then v>=l/n if vn- cos , then u>=l/n.
Theorem 2. Let f(z) be an n-valued algebroid function of order, 01, whose poles lie on the positive real axis. Let a, ]--1, ...,

n, be mutually distinct values and pu’t
(1.4) X=I--A(a, f) and Y=I--A(, f).
We suppose that zeros of f(z)--a, ]= 1, ..., n, lie wholly on the nega-
tive real axis. Then, when 1/2gl, we have
(1.5) X+Y-2XY cos ugsin(z2), ] 1, ., n.
When01/2, the same inequality still holds for some pair (X, Y),
provided
(1.6) Xeos z and Yeos.

2. Preliminaries. Let f(z) and a, ]= 1, ., n, be as in Theorem
1. Let Y(z) be the ]-th determination of f(z), l]n. Put

A(z)=max (1, A0(z)], ..., ]A(z)]),
g(z)=max (1, [g(z)],..., [g(z)[),

in which g(z)= Ao(z)a+A(z)a-+. + A(z), an’d
l o log A(re)dO.p(r, A)=

2un
Then, by a theorem of Valiron [6], we have
(2.1) ]g(r, A)--T(r, f)[=O(1).
Ozawa [3] showed that
(2.2) z(r, g)=z(r, A)+O(1),

(2.3) =log+]y(z)llog Ao(Z) +0(1).

We put f(z)=g(z)/Ao(z). Then, by [5, p. 2, Prop. 4 (ii)], we have
(using (2.1))
(2.4) T(r, f)<nz(r, A)+O(1)gnT(r, f)+O(1),
from which we see that f(z) are meromorphic functions of order at
most 2.

Then, we have

(2.5) T(r,f) 1 log g(re*) dSWN r,
= = Ao(re)

: log+(max] g(re*)])
2

i,o (1)1 log+]A0(re*)]d0+N r,
2

2zl I’0" log g(e)dO--m(r, Ao)+N(r,)
=nz(r, g)--m(r, Ao)+N(r, l/A0)
=Z(r, g)--m(r, 1/Ao)+O(1).

Since 0 is not a Valiron deficient value or Ao(z), we have
(2.6) m(r, 1/Ao)=o(T(r, Ao))=o(z(r, A))=o(T(r, f)).
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By (2.1), (2.2), (2.5)and (2.6), we obtain

(2.7) nT(r, f)<nl(r, A)+O(1) T(r, f)+o(T(r, f)).

:. Proof of Theorem 1. We make use of the techniques
Edrei-Fuchs [1]. Since each f(z)=g(z)/Ao(z) is a function o order

2 1, we obtia as in [1, p. 239],

(3.1) T(r, f).[ N(t, O)P(t, r, )dt+ N(t, )P(t, r, --)dt,

where
P(t, r, ) -r sin / (t +2tr cos r+r) (0 )

and =(r) is a number such that 04. N(t, 0) and N(t,
denote the counting unctions o 1/f(z) and Ao(z), respectively.

By (3.1) and (2.7), we get

nT(r, f) nN(t a, f)P(t, r, )dt
j=l

Let U and V be such that Uu and Vv. Then, by the definition
o deficiency

N(t;a, f)UT(t, f) and N(t; , f)VT(t, f) (tto).
As in [1, p. 240], we make use of the notion of PSlya peaks {r}. Then
we deduce

(3.2) (l+o(1))T(r, f)g UT(r, f) t -’P(t, r, fl)dt
j=l

+=lYT(r’ f) / P(t, r,

+ P(t, r, =-fl)dt +(r),

where (r) is a quantity such that (r)=O(1/r).
Writing t=sr, we obtain

P(t, P(t,

=: s+P(s, 1, fl)dt+: (s---s+gP(s, 1, fl)ds= Sinsinfl2=2
where 0<s--s+’<r (0sl). Letr and then make (in this
order) the transition to the limit e0, r0, Uu, Vv. We argue
similarly for the terms icluding =-. Thus we get

(3.3) 1 max {(u sin fl1+v sin (--fl)1)/sin I}.
j= 0=

Since u sinI+v sin (-fl) t is a continuous unction of fl, we can
find r for which the max0, in (3.3) is attained. Hence
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(3.4) sin u2<: {usin,+vsin(--,)2}<=n{usin,]+vsin(z--,)}
for a ,, l,n. Thus
(3.5) sin2n{usin--v sinr cos u+v sin cos r}

n{(u--v cos)+v sinz} n{u+v 2uv cos
which proves the inequality in Theorem 1.

If vn- cos u2, then from (3.5) we see that 0, and by (3.4)
nu sin sin --sin( ) cos

sin cos ( ) sin (u ) cos z
sin ], u1/n.

The case un- cos] is treated similarly.
4. Proof of Theorem 2. We ollow the method of Shea [4].

Applying Shea’s representation to meromorphic function f(z)=g(z)/
Ao(z) and using (2.4), we have

(4.1) nT(+, f).[/ nN(t; a+, f)P(t, r,

+,/)P(,, +, ++
with a suitable constant A0 (see [4, p. 215]).

Let X+, F be such that 0X+X+ and 0Y. Then
(4.2) N(t;a+, f)X+T(t, f) and N(t; , f)T(t, f) (tto)
We argue as in [4, p. 216]. Let Z be the lower order o the algebroid
unction f(z), and choose any positive number p such that
and let {r:} be a sequence of PSlya peaks ,of the second kind, o order
p, or the unction T(r, f). Then we obtain by (4.1)

fl)dt-- fl)dt--A log r

(m++),
where s and S run over the associated sequences {s:} and {S:} or
[4, p. 208]. Making the change o variable s=t/r: and divided by
T(r:, f), we get

1+o(1)X sP(s, 1, fl)ds+ Y sP(s, 1,
dSm/rm dSm/rm

(m).
Thus

I>=X __.I[ s"P(s’ 1, fl)ds-[ s,P(s, 1, --fl)ds.

Evaluating these integrals and letting X-X, --Y, we obtain
(4.3) sin p>=X sin flp+ Y sin (--fl)p ([<=p<=)
for any ], l<:]<__n. (4.3) holds for any fl, 0flu, but since the
right hand side is continuous, (4.3) holds for 0_<_/_<_.

We put p= and fl=2-tan-((X-YcosuD/(YsinD). Then
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we obtain easily the inequality (1.5).
(1.6) insures that 0<=/<= when 1/2.

We note that the supposition
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