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Some Remarks on Nonlinear Ergodic Theorems
in Banach Spaces
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(Communicated by K.Ssaku YOSlD-, M. Z. )., March 12, 1980)

1. Introduction. Throughout this note we assume that X is a
uniformly convex real Banach space and C is a closed convex nonempty
subset of X. The value of x* e X* at x e X will be denoted by (x, x*).
The duality mapping F (multi-valued) from X into X* will be defined

br F(x)-- (x* e X*" (x, x*)-II x -- x* ) for x e X. We say that X is
(F) if the norm of X is Frchet differentiable, i.e. for each x e X with
x=/=0, lim0 t-(Ix-tyll Ix[) exists uniformly in y e B(0, 1), where
B(x, r)=(z e X" [[z-x[tgr}. By T e Cont (C) we mean that T" C--.C
and T is a contraction, i.e. [[Tx--Ty Ig[Ix--y[for x,y in C. The set
of fixed points of T will be denoted by (T).

Recently R. E. Bruck and S. Reich established a nonlinear mean
ergodic theorem, and R. E. Bruck [3] gave a simple proof of the theo-
rem" If X is (F), C is bounded and T e Cont (C), then for each x in
C {Tx} is weakly almost-convergent to a point of (T). In this note
we deal with the weak almost-convergence of almost-orbits of (T),
T e Cont (C), and obtain an extension of the above-mentioned theorem
(see 3). To this end we prove Proposition 2.2 in 2. This proposi-
tion is also used to show the weak convergence of almost-orbits of re-
solvents for m-dissipative operators in 4.

2. Almost.orbits of contractions. Let T e Cont (C) for n_>_l
and set P=TT_...T for m>_n>=l. A sequence {X}n>0 in C is
called an almost-orbit of (T) if

lim [sup01 x+-P+x-x ]-0.
Let F be the set of strictly increasing, continuous and convex unc-
tions ." [0, oo)[0, oo) with ?(0)=0. According to Bruck [3] we say
that T" C--.X is of type () if e F and for ull x, y e C and 0g2gl

7(I Tx+(1--)Ty--T(x+(1--)y) )=llx--Y
It is known that if C is bounded then there exists . e F such that
every contraction T" C--X is of type (.). (See [3, Lemma 1.1].)

Lemma 2.1. Let T e Cont(C) for n>=l, and let {X}n_0 and (Yn)n>o
be almost-orbits of (Tn}. Then we have the following"

(a) xn-yn II) is convergent.
(b) If (Yn} i8 bounded, then for any , e (0, 1) (,x+ (1-)Yn} i8 an
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almost-orbit of {T}.
Proof. (a) can be proved by the same way as in [3, Lemma 2.1],

and therefore we omit the proof of it. Let us now show (b). Put
z--x+(1-)y. Since {y} is bounded, so is {x} by (a). Choose an
r0 such that {x}, {y}B(O,r), and put C=CB(O,r) and
=P+]v (the restriction of P+ to C). Then C is a bounded closed
convex subset and Q+" CX is a contraction. Thus there is
such that every Q+ is of type (). Hence, by a similar way to that
o [3, Lemma 2.2] we obtain

z+-Q+z_]
2a+(1--2)fl+-( x---Y-

or n 1 and m0, where a sup0l]x+-- Q+x_]] and
=sup0 ]yn+-Q+y_]. Since lim ]x-y ]exists by (a) and
limn an=lim fl=0, it readily ollows that

lim [supz0 ]z+-P+z_]]]=O. Q.E.D.
Proposition 2.2. Suppose that X is (F), T e Cont (C) for nl

and D={f e C" ]]Tf--f]}. If {x}z0 is an almost-orbit

of {T}, then the sequence {(x,F(f-g))} is convergent for all f, g e D.
Proof. If f e D, the constant sequence {f} is an almost-orbit

{T}. Indeed, sup0 f-P+f <sup0= {f--T f+E+-+r
--+ fl}<= ]f-TflO as n Let 0<2<1 and f, ge D
By Lemma 2.1, {J2x+(1-2)f-gj} is convergent as n--. However,
since {x--f} is bounded, the Fr6chet differentiability of the norm of
X implies that

lim,0 (22)-(]f-g+2(x-f) 2--f--g]2)=(Xn--f,F(f --g))
uniformly in n. Hence lim (Xn-- f, F(f-- g)) limn,, (22) -(]2x
+ (1-- 2)f-- g + f-- g ) exists. Q.E.D.

Corollary 2.3. Suppose that X is (F), T e Cont(C) for nl and
D={f e C"= ]]Tf f }. Let {X}nZ0 be an almost-orbit of
{T}, and let w({x}) denote the set of weak subsequential limits of {x}.
Then D clco O({Xn}) is at most a singleton, where clco E denotes the
closed convex hull of E.

Proof. It follows from Proposition 2.2 that for all u, v e O({Xn})
and f, g e D, (u, F(f g)) limn (Xn, F(f g)) (v F(f g)) and hence
(u-v,F(f--g))=O. But this is also true for all u,v e clco o.({x}).
Thus D clco o.({x}) is at most a singleton. Q.E.D.

3. Weak almost.convergence of almost.orbits. A sequence
{Xn}n in X is said to be weakly almost-convergent to x if w-

n-1limnn- =0x+, x uniformly in i0. By virtue of [3, Theorem
1.1] we have the following

Theorem 3.1. Suppose that T e Cont (C), (T) and {x}z0 is
a bounded sequence in C such that lim ]lx+- Tx]l=O. Then for
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every weak neighborhood W of (T) there exists a positive integer N
such that n- ,o x/. e W for all nN and i>=O.

Theorem :.2. Let X be (F) and T, T e Cont (C) for n>= 1. Sup-
pose that

(i) lim Tx= Tx uniformly in x e B for every bounded set
BC,

(ii) (T)=/= and (T)D={f e C" ,__ ITnf f I< c}.
Then every almost-orbit {x}z0 of {Tn} is weakly almost-convergent to
the unique point of (T) clco w({x}).

Proof. Let i(n) be any sequence of nonnegative integers., and set- It suffices to show that {s} converges weakly to8n --n-1 k=o Xk+l(n)"
a point of(T)clcoo,({Xn}). Since (Ix-fl} is convergent for f e D
(see the proo o Proposition 2.2), {x} is bounded. Hence, (i) implies
that lim [lx/--Tx [=0. Consequently, Ow({S})c(T) by Theorem
3.1. Moreover Ww({S})_-0 clco {x" k>=i}=clco W({Xn}). Thus we
have %({s})c(T) clco o({Xn})CD clco ({Xn}). However, since D

clco ({Xn}) is a singleton by Corollary 2.3, we obtain that Ww((S}) is
a singleton and is equal to (T) clco ({x}). Q.E.D.

Remarks. 1) Under the assumptions of Theorem 3.2 we have
(T)=D. 2) If X is a Hilbert space, x0 e C and x=Tx_ for
in Theorem 3.2, then the condition (i) can be replaced by a weaker
condition "lim Tx= Tx for each x e C".

Applying Theorem 3.2 with T 2T+ (1-- 2n)I, we have the fol-
lowing corollary which extends a result due to S. Reich [4, Note added
in Proof]"

Corollary :}.:. Let X be (F), T e Cont(C) and 092=1 for n=l.
If (T):/:O and limn Rn--1, then every almost-orbit {x}_0 of
--(1--1n)I} is weakly almost-convergent to the unique point of (T)

clco w.({x}).
4. Weak convergence of almost.orbits of resolvents. Through-

out this section, it is assumed that A is an m-dissipative operator in
X with A-0=/=O and (2}n_ is a positive sequence. For 20 J denotes
the resolvent of A, i.e. J=(I--2A) -1. Clearly, J" X-+D(A) is a con-
traction.

Lemma 4.1. If {X}n_0 is an almost-orbit of {J} and yn=2;l(J.
I)x_, then limn 2n Yn O.

Proof. I f e A-0, the constant sequence {f} is an almost-orbit
of {J} and hence r=limn_ Xn--f exists by Lemma 2.1. I r=0,
then nllyllllJ.Xn_--xll-]lXn--Xn_]]-->O. (Note that
--0, or {Xn} is an almost-orbit of {J}.) Next, let r0 and choose an

no such that x--f r/2 or n__> no. Let be the modulus o uniform
convexity of X. Then (Ix-yl)<=l--]lx+y /2 for x, y e B(0, 1). Put-
ting x (Jx_,-- f) /an and y (x_-f)/a, where a x_-f 1, we
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have
an3( lynll/an)<__an-IIJ,xn_-f-2-,nyll or n>no.

However, since y e AJ,Xn_ and 0 e Af, the dissipativity of A implies
that IJx_-fJ,x_-f-yn for 0. Therefore we have

(r/2)(2n [[Yn[[/M){[x_-- f{--{{Jxn_-- f{ for n>no,
where i=SUPnian. Letting no, we see that limn

Q.E.D.
Theorem 4.2. Suppose that X is (F) and let (x}z0 be an almost-

orbit of (J}. If lim infn 2>0, then {x} is weakly convergent to a
point of A O. - Then 2 [[y[[0 as n byProo. Put Yn=2 (J--I)x_.
Lemma 4.1. Combining this with lim infn 2 0, we obtain

lim y][=0. Since y e AJxn_, we have
]](J--I)Jx_]]g[]y 0 as n.

Let {n’} be a subsequence of {n} and u=w-limn,. Xn,. Then u
=w-limn,J,x,_ byx-J,xn_[O asn. Therefore bythe demi-
closedness of J-I we have (J-I)u=O, i.e. u e A-0. This shows that
w.({x})A-0. However, since A-10cD= {f e X" ]Jf f]] ),
it ollows rom Corollary 2.3 that ({Xn}) is a singleton. Q.E.D.

Corollary 4.. Let B"XX be a continuous dissipative operator
which maps bounded sets of D(A) into bounded sets in X. Let (n}Z
be a nonnegative sequence and let xo e X and x =(I--2(A+B))-x_
for n1. (Note that each A+nB is m-dissipative (see [1]).) Suppose
that X is (F) and= . Then we have the following"

(a) If lim inf 2n)O, then (x} is weakly convergent to a point

of A-O.
(b) If lim sup>0 and=-=+]<, then {x=} is weakly

convergent to a point of A-O.
Proof. Put A==A+=B and T=(I-A)-, and let feA-0.

Then
[[Xn-- f[[[[Txn_--Tf [+][Tf f[[][Xn_--f[[+2 []Anf]]]

[Xn---f[[+2nen [[Bfl[, where [[[Afll[=infez
From this and=2=< we see that {x}z is bounded in D(A).

Put K=supz [[Bx [[. Since [[x--Jxn_[[=[[J(x=_--=Bxn)--J=x=_[[
2BxIIK2s, we obtain

x --J,+ .JnXn_x[<n+m
for nl and m0. This shows that (Xn} is an almost-orbit of {J}.
Thus (a) is a direct consequence of Theorem 4.2.

To prove (b) it suces to show that lim Iyll=0 as seen rom
the proof of Theorem 4.2, where y=2;(J-I)xn_. To this end set
V=2;(X--Xn_). Since Vn AnXn and v++(,n--,n+)Bxn+ e AnXn+l,
the dissipativity of A implies



92 K. KOBAYASI and I. IIIYADERA [Vol. 56(A),

Combining this with

__
le-n/,l c, we have that {I]v]l} is conver-

gent. Moreover [Ivn--ynll=; llxn--Jxn_ll K--O as n--c (note
that {} converges by ,le-/[<c). Therefore {I]Y]} is also
convergent, and hence lim Y (lim sup 2n)-1 (lim 2 Y ]1)
-0. Q.E.D.

Taking =0 for n=>l in Corollary 4.3 we have the following
which is due to S. Reich [4].

Corollary 4.4. Suppose that X is (F). Let Xo X and x=Jxn_
for n>=l. If limsup0, then {x} is weakly convergent to a
point of A- IO.

Remark. In Theorem 4.2 and Corollaries 4.3 and 4.4 the assump-
tion "X is (F)" may be replaced by "X satisfies Opial’s condition".
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