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All number fields we consider are in the complex number field. The
symbol (S} denotes a multiplicative group generated by S.

For a finite extension k/Q, let E be the group of units of k, and
E be the group generated by all units o proper subfields of k together
with roots of unity in k. We define the group H of relative units of
k by
H={ e E N/,(z) is a root of unity ior a proper subfield k’ o k}.

Let us consider the problem to construct E with the help of E.
It is interesting to utilize H together with E when (E "E)= / oo.

Hasse [2] has treated such a case when k is a real cyclic quartic number
field. We are going to treat the case when k is a non-galois quartic
(resp. sextic) number field having a quadratic subfield (resp. a quadratic
and a cubic subfields). Then the galois closure o k/Q is a dihedral
extension o degree 8 or 12 over Q. We restrict .our investigation on
such extensions.

From now on, we assume n= 2 or 3. Let L/Q be a galois extension
of degree 4n with the galois group

G (, } =() 1.
The invariant subfield of the subgroup (r} (resp. (ar}, (an}) is denoted
by K (resp. F,/2), and the maximal abelian subfield by A. Then Kand F
are non-galois number fields o degree 2n which we are going to study.
The quadratic subfield of K (resp. F) is denoted by K. (resp. F.). When
n=3, the cubic subfield o both K and F is denoted by K. The quartic
field A is the composite field of K. and F. which contains another quad-
ratic subfield A. Note that A=9 when n=2.

It is easy to show the following, which is in Nagell [6] when n= 2.
Proposition 1. When LR=f2, we have E:=E and EF=E.
Therefore we treat the two cases:

CaseI: LR=K. CaseII: LcR.
Taking into account that all roots of unity of L is contained in the
quartic subfield A, we take and fix a generator (resp. , p) o the group
of roots o unity o A (resp. A., F).

1. Type of EK and EF. A typical example o K and F are a pure
number field of degree 2n. The method, which is used in Stender [8],
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[9], [10] in such cases, to determine undamental units of K and F is
based on the ollowing easy lemma o group theory"

Let E be a ree abelian group o rank r, and E be m subgroups o
rank (l<im). Assume that there are m natural numbers n and
m homomorphisms f" EE which satisfy f(x)= x or x e E and
f(x)= 1 or x e E (]i). Then (E, ..., E)=E E (direct
product). Thus we put f" A "" f, H’=Ker (f)= (x e E f(x)
=1 (li<m)} and r0"=rank (H). Then we have

Lemma 1. (i) The group (H,E xE)=HEx.., xE.
(ii) The image f(E) contains E’X xE and the inverse image
f-(E’x.., xE) HxEx xE. Therefore r=ro+r+...
and the index (E" HE E) divides n. .n. (iii) If n (lgi
m) are pairwise relatively prime, a basis {y}= (s’=r--ro) of f(E)
can be chosen so that y, ...,y eel; y+,...,y+ eEl; ;y._+,
..,y e E.

In Lemma 1, i we regard E as E/(-1} (resp. E/(p}) and E
as the groups o units of maximal proper subfields of K (resp. F)
modulo roots o unity, then the relative norm maps from K (resp. F)
satisfy the condition of f, and then H can be regarded as H/(-I
(resp. H/(p}). Hence we have

Corollary 1 (Nagell [6]). Let n=2. (i) In Case I, let E=(--1,
} with 1, H=(-1,} with 1, and let H(=E)=(p,o}. Then
E=(-- 1, , }, where

= if e N/(E), = or otherwise.
(ii) In Case II, let E=(- 1, with 1, and H=

with 01 and 1. Then E=(-1,0,,}, where

= if e N/(E), and s=e0e (g,, 0 or 1) otherwise.

Corollary 2. Let n=3. (i) In Case I, let E=(- 1, } with 1,
E,=(- 1, with >1, H=(- 1, } with >1, and let H=
Then E=(- 1, , ,} and E=(p, o, }, where , and are given
by"

otherwise;= if e N/(E), and e= or e
= if e N/(E), and = or otherwise;

P (Z, ,=0 or 1,es=s if s e N/,(E), and
otherwise.

(ii) In Case II, letE (- 1, ) wish>1, E,=(- 1, s, } with

sl, 1, and let H=(-1, e0, e) with e0l, el. Then E=(-1,
e0, e’’ ", ), where e (i=2, 3, 4) are given by"

= if N/(E), and =o (,= +1 or O) otherwise;

= if N/(E), and =ee[ (if, ,=0 or 1) otherwise;
if , N/,(E) and e=oe (if, ,, 2=0 or 1)

otherwise.
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2. Minkowski unit. In order to investigate the relation between
E and E, the following group homomorphisms are useful when n--2
(resp. 3):

K--F; (x) :-x/ (resp. x/),
4z FK (y) :=y+ (resp. y+).

Then it is easy to see
Lemma 2. (i) (H)cH and (H)H.
(ii) When n=2 (resp. 3),

+ (x)=xN(x) (esp. x-N(x)N/(x)) for x e K,
+(y)=yN/(y) (resp. y-N/(y)N/(yg) for y e Fx.

From this lemma follow the following propositions.

Proposition 2. Let n=2. The notation being as in Corollary 1,
we have

(H <- 1, +(H)>)(H <p, 9(H)>)=2 (resp. 4)
in Case I (resp. Case II). If = e K in Case I, we have

H(=E)=<p,(sz)> and H=<--I,
Proposition 3. Let n=3. The notation being as in Corollary 2,

we have
(H <- 1, (H)>)(H <p, 9(H)>)=3 (resp. 9)

in Case I (resp. Case II). In Case I, i$ holds tha$

H;=<p, 9(e)> and H=<--l,+(e0)>
if =U e K, and tha U if and only if

In Case I, we study whether L has a Minkowski unit a unit which
together with some of its conjugates forms a set of fundamental units
of L (cf. Brumer [1]). A condition that L has a real M-unit (Minkowski
unit which is real) is obtained by Propositions 2 and 3.

Theorem 1. When n=2 (resp. 3) in Case I, the notation being as
in Corollary 1 (resp. 2), the field L has a real M-unit (i.e. , e E
such tha$ Ez=<, ,, ;,..., ->) if and only if

s=J,E=<w,> and KK(J), Q(),
(resp. =:,=,E=<,> and E=<, , >),

and then we can take= (resp. ;) as an M-unit of L.
The proof of the "only if" part is easy. The "if" part is proved

by showing that (resp. ;) actually gives an M-unit on account of
Proposition 2 (resp. 3) and of the fact that E is contained in E’L L"

It seems more complicated to see whether L has an M-unit which
is not necessarily real (e.g. E=<,,/,[> when n=2 in Case I).
However, we have

Proposition 4. Let n=2 in Case I. The notation being as in
Corollary 1, the field L has no M-unit if E=<-- 1, , > and E=<,

The proof is given by showing contradiction under the assumption
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that there is an M-unit in L.
3. Binomial unit. In the ollowing, we assume K--Q(O)

(’=/d 0) is a real pure number field of degree 2n with a natural
number dl. We may suppose that the action o G on L-Q(,)
satisfies that 0-0, 0-0, - and =-. Then F-Q(/--nd) is
a totally imaginary pure number field og degree 2n. We mention that
/e K when n=2 and that /., / e K when n=3.

We can construct a set of gundamental units o K in a certain case
when K has a binomial unit.

Theorem 2. Suppose that d is square free and that K has a
binomial unit a--bO with natural numbers a and b such that a+ 1_ b.
Then a set {,}L of fundamental units of K is given by

l=a--bt, 2=a+bO; and 3=a2+abO+bO when n=3.
The theorem is proved by Stender’s method in [8], [9] ater some

calculations. The field, which is considered in Theorem 2, is different
2rom that of Stender [10] if b 1.

The simplest example o Theorem 2 is the case when a--bnc+__l
with a natural number c and d--(an- 1)/b2n is square ree. There are
infinitely many such cases or any fixed (odd when n= 2) natural number
b (see [5]). This. example has been treated more in detail in author’s
article [7] when n=3.

By Propositions. 2, 3 nd Theorem 2, we obtain
Corollary 3. The assumption being as in Theorem 2,
E= (p, (i)> (resp. (p, (1), ()>) when n=2 (resp. 3).
As an explicit form of a set o fundamental units o K is. given in

the case o Theorem 2, we can determine E andE according to Kuroda
[4] and Iimura [3] and see that the condition o Theorem 1 is. satisfied
except or the case d=2. Thus we have

Theorem 3. The assumption being as in Theorem 2, is a real
M-unit of L Q(O, ) if d:/: 2.

Lastly, we give an example of L which has no (real or imaginary)
M-unit in case when n= 2. Let t=d’= 3g with a square ree natural
number g which is not divisible by 3. Then the condition o Proposi-
tion 4 is verified easily (c. [4] and [8]).

Proposition 5. The field L=Q(/g, /-1) has no M-unit if g is a
square free natural number prime to 3.
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