17. Some Prehomogeneous Vector Spaces with Relative Invariants of Degree Four and the Formula of the Fourier Transforms

By Masakazu Muro
Department of Mathematics, Kochi University
(Communicated by Kôsaku Yosida, m. J. A., Feb. 12, 1980)

In this article, we shall investigate the relative invariant $f(x)$ of a regular prehomogeneous vector space (G, V) when it is one of the following ones; 1) $\left.\left.\boldsymbol{S L}(6) \times G L(1)\left(\boldsymbol{\Lambda}_{3} \times \boldsymbol{\Lambda}_{1}\right), 2\right) S p(3) \times G L(1)\left(\Lambda_{3} \times \boldsymbol{\Lambda}_{1}\right), 3\right)$ $\boldsymbol{S p i n}(12) \times \boldsymbol{G L}(1)\left((\right.$ half-spin rep. $\left.\left.) \times \boldsymbol{\Lambda}_{1}\right), 4\right) \boldsymbol{E}_{7} \times \boldsymbol{G L}(1)\left((56 \mathrm{dim}\right.$. rep. $\left.) \times \boldsymbol{\Lambda}_{1}\right)$, where $\boldsymbol{\Lambda}_{i}$ is the representation on the space of the skew-symmetric tensors of rank i. The polynomial $f(x)$ has the following form, (1) $f(x)=\left(x_{0} y_{0}-\langle X, Y\rangle\right)^{2}+4 x_{0} N(Y)+4 y_{0} N(X)-4\left\langle X^{\#}, Y^{\#}\right\rangle$.

Here, $x=\left(x_{0}, y_{0}, X, Y\right) \in \boldsymbol{C} \oplus \boldsymbol{C} \oplus \boldsymbol{C}^{m} \oplus \boldsymbol{C}^{m}$ and $\langle X, Y\rangle$ is some bilinear form in X and $Y, N(X)$ is some polynomials in X, and $X \mapsto X^{\#}$ is some polynomial mapping from the X-space into itself.

We shall calculate the Fourier transform of the hyperfunction $|f(x)|^{s}$ for a generic $s \in C$. As shown in [5], the formula of the Fourier transform gives the functional equation of the local zeta function associated with the prehomogeneous vector spaces.

1. Let u_{1}, \cdots, u_{6} be a basis of the six-dimensional complex vector space \boldsymbol{E} with the natural action of $\boldsymbol{G}=\boldsymbol{S L}(6) \times \boldsymbol{G} \boldsymbol{L}(1)$, i.e., $\left(u_{1}, \cdots, u_{8}\right) \mapsto$ $C_{2}\left(u_{1}, \cdots, u_{6}\right)^{t} g_{1}$ for $\left(g_{1}, c\right) \in \boldsymbol{S L}(6) \times \boldsymbol{G L}(1)$. We denote by $\boldsymbol{V}(20)$ the vector space of the skew-symmetric tensors on E of rank 3 and $x_{i j k}$ denotes the coefficient of $u_{i} \wedge u_{j} \wedge u_{k}$. The complex algebraic group $\boldsymbol{S L}(6) \times \boldsymbol{G L}(1)$ acts on $V(20)$, and it is a regular prehomogeneous vector space. We identify $V(20)$ and $\boldsymbol{C} \oplus C \oplus M(3, C) \oplus M(3, C)$ by

$$
\begin{array}{ll}
x_{0}=x_{123} & y_{0}=x_{456} \tag{2}\\
X=\left(\begin{array}{ll}
x_{423}, x_{143}, x_{124} \\
x_{523}, x_{153}, x_{125} \\
x_{623}, x_{163}, x_{128}
\end{array}\right) & Y=\left(\begin{array}{l}
x_{156}, x_{416}, x_{451} \\
x_{256}, x_{422}, x_{452} \\
x_{355}, x_{486}, x_{453}
\end{array}\right) .
\end{array}
$$

By setting $\langle X, Y\rangle=\operatorname{tr}(X \cdot Y), N(X)=\operatorname{det} X$, and $X^{*}=$ the cofactor matrix of $X, f(x)$ is an irreducible relatively invariant polynomial on the prehomogeneous vector space $(\boldsymbol{G}, \boldsymbol{V})=(\boldsymbol{S L}(6) \times \boldsymbol{G} \boldsymbol{L}(1), \boldsymbol{V}(20))$ with the character $\chi\left(g_{1}, c\right)=c^{12}$. This is the prehomogeneous vector space 1). We define the symplectic group $S p(3)$ as the subgroup of $S L(6)$ consisting of the elements which leave $u_{1} \wedge u_{4}+u_{2} \wedge u_{5}+u_{3} \wedge u_{6}$ invariant. When we set

$$
\begin{equation*}
V(14)=\left\{\left(x_{0}, y_{0}, X, Y\right) \in V(20) ;{ }^{t} X=X,{ }^{t} Y=Y\right\} \tag{3}
\end{equation*}
$$

$V(14)$ is an invariant subspace under the actions of $S p(3) \times G L(1)$, and $(G, V)=(\boldsymbol{S p}(3) \times \boldsymbol{G L}(1), V(14))$ is a regular prehomogeneous vector space. The restriction of $f(x)$ on $V(14)$ is a relative invariant corresponding to the character $\chi\left(g_{1}, C\right)=C^{12}$. This is the prehomogeneous vector space 2).

Next consider the even half-spin representation of the complex spinor group $\operatorname{Spin}(12)$. We denote by $V(32)$ the space of skew-symmetric tensors of even rank on the six dimensional complex vector space \boldsymbol{E} and let $\left\{e_{1}, \cdots, e_{\theta}\right\}$ be a basis of \boldsymbol{E}. We denote an element of $\boldsymbol{V}(32)$ by (4)

$$
x=x_{0}+\sum_{i<j} x_{i j} e_{i} e_{j}+\sum_{i<j} y_{i j} e_{i j}^{*}+y_{0} e_{L}
$$

where $e_{L}=e_{1} e_{2} e_{3} e_{4} e_{5} e_{8}$ and $e_{i j}^{*}$ is the element of the form $e_{k} e_{L} e_{m} e_{n}$ satisfying $e_{i} e_{j} e_{i j}^{*}=e_{L}$, and X, Y denote the 6×6 skew-symmetric matrices whose $i-j$ entries are $x_{i j}$ and $y_{i j}$ for $i<j$, respectively. Then $\operatorname{Spin}(12)$ acts on $V(32)$ as the even half-spin representation (see J. Igusa [1]), and $(\boldsymbol{G}, \boldsymbol{V})=(\boldsymbol{\operatorname { S p i n }}(12) \times \boldsymbol{G L}(1), \boldsymbol{V}(32))$ is a regular prehomogeneous vector space. Here $\boldsymbol{G L}(1)$ acts on $V(32)$ by the multiplication. The polynomial $f(x)$ is an irreducible relative invariant by setting $\langle X, Y\rangle=$ $-\operatorname{tr}(X \cdot Y) / 2, N(X)=\operatorname{Pff}(X)$ and $X^{\#}$ is the 6×6 skew-symmetric matrix whose i - j entry is $\pm \operatorname{Pff}\left(X_{i j}\right)$ for $i \lessgtr j$, where $X_{i j}$ is the 4×4 skewsymmetric matrix obtained by crossing out the i-th and j-th columns and rows. The character of $f(x)$ is $\chi\left(g_{1}, c\right)=c^{4}$ for $\left(g_{1}, c\right) \in \operatorname{Spin}(12)$ $\times \boldsymbol{G L}(1)$. This is the prehomogeneous vector space 3). Here, $\operatorname{Pff}(X)$ is the Pffafian of X normalized by

$$
\operatorname{Pff}\left(\begin{array}{llll}
-1^{1} & & \\
& -1^{1} & \\
& & \ddots & \\
& & -1^{1}
\end{array}\right)=1
$$

Next we shall consider the exceptional complex algebraic group \boldsymbol{E}_{7} and the 56 -dimensional representation of \boldsymbol{E}_{7}. The representation space $V(56)$ is

$$
\begin{equation*}
\left\{\left(x_{0}, y_{0}, X, Y\right) ; x_{0}, y_{0} \in C \text { and } X, Y \in \mathcal{G}\right\}, \tag{5}
\end{equation*}
$$

where g is the exceptional simple Jordan algebra over C (see N. Jacobson [2]). An element X of g is denoted by

$$
X=\left(\begin{array}{ll}
\xi_{1}, \bar{x}_{3}, x_{2} \tag{6}\\
x_{3}, \xi_{2}, \bar{x}_{1} \\
\bar{x}_{2}, x_{1}, \xi_{3}
\end{array}\right) \quad \begin{aligned}
& \xi_{1}, \xi_{2}, \xi_{3} \in \boldsymbol{C} \\
& x_{1}, x_{2}, x_{3} \in \mathbb{R}
\end{aligned}
$$

where \mathbb{R} is the Cayley algebra over C. We define the norm of X by $\operatorname{det} X=\xi_{1} \xi_{2} \xi_{3}+\operatorname{tr}\left(x_{1} x_{2} x_{3}\right)-\sum \xi_{i} x_{i} \bar{x}_{i}$ and the trace of X by $\operatorname{tr}(X)=\xi_{1}+\xi_{2}$ $+\xi_{3}$. We set $S(X)=\left(\operatorname{tr}(X)^{2}-\operatorname{tr}\left(X^{2}\right)\right) / 2$. Then $(\boldsymbol{G}, V)=\left(\boldsymbol{E}_{7} \times \boldsymbol{G L}(1),(V 56)\right)$ is a regular prehomogeneous vector space. Here $\boldsymbol{G L}(1)$ acts on $V(56)$ by the multiplication. The polynomial $f(x)$ is an irreducible relative in-
variant by setting $\langle X, Y\rangle=\operatorname{tr}(X Y+Y X) / 2, X^{\#}=X^{2}-\operatorname{tr}(X) \cdot X+S(X) \cdot I$, and $N(X)=\operatorname{det} X$. The character of $f(x)$ is $\chi\left(g_{1}, c\right)=c^{4}$ for $\left(g_{1}, c\right) \in E_{7}$ $\times \boldsymbol{G L}(1)$. This is the prehomogeneous vector space 4).
2. The b-function of $f^{s}(x)$ is calculated by micro-local calculus (see T. Kimura [3]), and it is

$$
\begin{equation*}
b(s)=(s+1)\left(s+\frac{l+3}{2}\right)\left(s+\frac{2 l+3}{2}\right)\left(s+\frac{3 l+4}{2}\right) \tag{7}
\end{equation*}
$$

for 1) $l=2$, 2) $l=1$, 3) $l=4$, 4) $l=8$, respectively.
3. The prehomogeneous vector spaces 1)-4) have the following real forms $\left(G_{R}, V_{R}\right)$.

1) 1)-i) $\quad \boldsymbol{G}_{\boldsymbol{R}}=\boldsymbol{S U}(3,3, C) \times \boldsymbol{G L}(1, R)$

$$
V_{R}=\left\{\begin{array}{c}
\left(x_{0} \cdot \sqrt{-1} y_{0}, X, Y\right) ; x_{0}, y_{0} \in R . \quad X, Y \in M(3, C) \\
\text { and }{ }^{t} X=-X,{ }^{t} Y=Y
\end{array}\right\} .
$$

1)-ii) $\quad \boldsymbol{G}_{\boldsymbol{R}}=\boldsymbol{S L}(6, R) \times \boldsymbol{G L}(1, R)$
$V_{\boldsymbol{R}}=\left\{\left(x_{0}, y_{0}, X, Y\right) ; x_{0}, y_{0} \in \boldsymbol{R} . \quad X, Y \in M(3, R)\right\}$.
1)-iii) $\boldsymbol{G}_{\boldsymbol{R}}=\boldsymbol{S} \boldsymbol{U}((1,5, C) \times \boldsymbol{G L}(1, R)$
$V_{\boldsymbol{R}}=\left\{\left(x_{0},-\bar{x}_{0}, X,{ }^{t} \bar{X}\left(-1_{1}\right)\right) ; x_{0} \in \boldsymbol{C}, X \in M(3, C)\right\}$.
2) $\quad 2)-\mathrm{i}) \quad \boldsymbol{G}_{\boldsymbol{R}}=\boldsymbol{S p}(3, R) \times \boldsymbol{G L}(1, R)$

$$
V_{R}=\left\{\begin{array}{c}
\left(x_{0}, y_{0}, X, Y\right) ; x_{0}, y_{0} \in R . X, Y \in M(3, R) \\
\text { and }{ }^{t} X=X,{ }^{t} Y=Y
\end{array}\right\} .
$$

3) 3$)-\mathrm{i}) \quad G_{R}=\operatorname{Spin}(6, H) \times G L(1, R)$

$$
V_{\boldsymbol{R}}=\left\{\left(x_{0}, \bar{x}_{0}, X, \bar{X}\right) ; x_{0} \in \boldsymbol{C} . X \in M(6, C) \text { and }{ }^{t} X=-X\right\} .
$$

3)-ii) $\quad G_{R}=\operatorname{Spin}(6,6, R) \times G L(1, R)$

$$
\boldsymbol{V}_{R}=\left\{\begin{array}{c}
\left(x_{0}, y_{0}, X, Y\right) ; x_{0}, y_{0} \in \boldsymbol{R} . \quad X, Y \in(6, R) \\
\text { and }{ }^{t} X=-X,{ }^{t} Y=-Y
\end{array}\right\}
$$

3)-iii) $\boldsymbol{G}_{\boldsymbol{R}}=\operatorname{Spin}(10,2, R) \times \boldsymbol{G L}(1, R)$

$$
V_{R}=\left\{\begin{array}{l}
\left(x_{0}, y_{0}, X, Y\right) ; x_{0}, y_{0} \in C . \\
\quad X=\left(\frac{X_{1}}{--^{t} X_{2}} \left\lvert\, \frac{X_{2}}{\sqrt{-1} \tilde{y}_{0}}\right.\right), \quad Y=\left(\frac{Y_{1}}{-^{t} \tilde{X}_{2}} \left\lvert\, \frac{\tilde{X}_{2}}{\sqrt{-1} \tilde{x}_{0}}\right.\right)
\end{array}\right),
$$

where $X_{2} \in M(4,2, C), \tilde{X}_{2}=\sqrt{-1} \bar{X}_{2}\left(-1^{1}\right), \tilde{x}_{0}=\bar{x}_{0}\left(-1^{1}\right), \quad \tilde{y}_{0}=\bar{y}_{0}\left(-1^{1}\right)$,

$$
\begin{aligned}
X_{1} & =\left(\begin{array}{cccc}
0, & x_{2}, & x_{3}, & x_{4} \\
-x_{2}, & 0, & -\sqrt{-1} \bar{x}_{4}, & \sqrt{-1} \bar{x}_{3} \\
-x_{3}, & \sqrt{-1} \bar{x}_{4}, & 0, & -\sqrt{-1} \bar{x}_{2} \\
-x_{4}, & -\sqrt{-1} \bar{x}_{3}, & \sqrt{-1} \bar{x}_{2}, & 0
\end{array}\right] \text { and } \\
Y_{1} & =\left[\begin{array}{cccc}
0, & -y_{2}, & -y_{3}, & -y_{4} \\
y_{2}, & 0, & \sqrt{-1} \bar{y}_{4}, & -\sqrt{-1} \bar{y}_{3} \\
y_{3}, & -\sqrt{-1} \bar{y}_{4}, & 0, & \sqrt{-1} \bar{y}_{2} \\
y_{4}, & \sqrt{-1} \bar{y}_{3}, & -\sqrt{-1} \bar{y}_{2}, & 0
\end{array}\right], \text { with } x_{i}, y_{i} \in C .
\end{aligned}
$$

4) 4)-i) $\quad \boldsymbol{G}_{\boldsymbol{R}}=\boldsymbol{E}_{7}^{d} \times \boldsymbol{G L}(1, \boldsymbol{R})$

$$
\boldsymbol{V}_{R}=\left\{\left(x_{0}, y_{0}, X, Y\right) ; x_{0}, y_{0} \in \boldsymbol{R} . X, Y \in \mathcal{G}^{a}\right\}
$$

4)-ii) $\quad \boldsymbol{G}_{\boldsymbol{R}}=\boldsymbol{E}_{7}^{s} \times \boldsymbol{G L}(\mathbf{1}, \boldsymbol{R})$

$$
\boldsymbol{V}_{\boldsymbol{R}}=\left\{\left(x_{0}, y_{0}, X, Y\right) ; x_{0}, y_{0} \in \boldsymbol{R} . X, Y \in \mathcal{g}^{s}\right\} .
$$

Here, \boldsymbol{E}_{7}^{d} and \boldsymbol{E}_{7}^{s} are real forms of \boldsymbol{E}_{7} whose Killing forms have the signature -25 and 7 , respectively, and g^{d} and g^{s} are the spaces of 3×3 octanion Hermitian matrices whose entries are Cayley division numbers and split Cayley numbers over R, respectively.
4. We define the inner product on V by

$$
\left\langle x, x^{\prime}\right\rangle=x_{0} y_{0}^{\prime}-x_{0}^{\prime} y_{0}-\left\langle X, Y^{\prime}\right\rangle+\left\langle X^{\prime}, Y\right\rangle
$$

We define the real-valued inner product on V_{R} by restricting this on V_{R} and by multiplying a constant of absolute value one if necessary. We denote by $d x$ the Euclidian measure on V_{R} satisfying

$$
(2 \pi)^{n} u\left(x^{\prime \prime}\right)=\iint u(x) \exp \left(\sqrt{-1}\left\langle x, x^{\prime}\right\rangle\right) \exp \left(-\sqrt{-1}\left\langle x^{\prime}, x^{\prime \prime}\right\rangle\right) d x d x^{\prime}
$$

where $n=\operatorname{dim} V_{R}$.
The open set $V_{R}-\{f=0\}$ decomposes into the following three connected components, which are $\boldsymbol{G}_{\boldsymbol{R}}^{+}$-orbits.

$$
\begin{align*}
& V_{1}= G_{R}^{+} \cdot\left(1,0,(0),\left({ }^{1}-1-1\right)\right) \tag{8}\\
&\left(\operatorname{resp} \cdot G_{R}^{+}\left(1,0,(0),\left({ }_{1} 1_{-1}\right)\right) ; G_{R}^{+} \cdot\left(0,0,\left(-1_{0}^{1} 0_{0}\right),\left(-1^{1} 0_{0}\right)\right)\right. \\
& V_{2}= G_{R}^{+} \cdot\left(1,0,(0),\left({ }^{1} 1_{-1}\right)\right) \\
&\left(\operatorname{resp} \cdot G_{R}^{+} \cdot\left(1,0,(0),\left({ }^{1} 1_{1}\right)\right) ;\right. \\
& G_{R}^{+} \cdot\left(1,1,\left[\begin{array}{ll}
-1^{1} & \\
& -1^{1} \\
-1
\end{array}\right],\left[\begin{array}{ll}
-1^{1} & \\
& \left.\left.\left.1_{1}^{1}-1\right]\right)\right) \\
& \\
& \left(\operatorname{resp} \cdot G_{R}^{+} \cdot\left(-1,0,(0),\left({ }^{1} 1_{1}\right)\right) ; G_{R}^{+} \cdot(1,1,(0),(0))\right)
\end{array}\right.\right.
\end{align*}
$$

in the case of 1)-i) (resp. 2)-i) and 4)-i) ; 3)-i)).
The hyperfunction

$$
|f|_{i}^{s}(x)= \begin{cases}|f(x)|^{s} & x \in V_{i} \tag{9}\\ 0 & x \notin V_{i}\end{cases}
$$

is defined first for $\operatorname{Re}(s) \gg 0$ and continued to C meromorphically. By identifying $V_{\boldsymbol{R}}$ and $V_{\boldsymbol{R}}^{*}$ by the inner product $\left\langle x, x^{\prime}\right\rangle,|f|_{i}^{s}\left(x^{\prime}\right)$ is defined on $V_{\boldsymbol{R}}^{*}$. The Fourier transform of $\mid f{ }_{i}^{\mid s}(x)$ is the following:

$$
\begin{align*}
& \int\left[\begin{array}{c}
|f|_{1}^{s}(x) \\
|f|_{2}^{\bar{s}}(x) \\
|f|_{3}^{s}(x)
\end{array}\right] \cdot \exp \left(\sqrt{-1}\left\langle x, x^{\prime}\right\rangle\right) d x \tag{10}\\
& =(2 \pi)^{3 l+2} \cdot \Gamma(s+1) \Gamma\left(s+\frac{l+3}{2}\right) \Gamma\left(s+\frac{2 l+3}{2}\right) \Gamma\left(s+\frac{3 l+4}{2}\right) \cdot 4^{2 s+n / 4}
\end{align*}
$$

$$
\cdot\left[\begin{array}{cc}
(-1)^{l} \cdot 2 \cdot \sin (2 \pi s), & \left(2+(-1)^{l}\right) \cdot 2 \cdot \cos (\pi s-(\pi(l-1) / 2)), \\
0, & (\sqrt{-1})^{l-1}+(-\sqrt{-1})^{l-1}+2 \cos (2 \pi s-(\pi(l-1) / 2)), \\
0, & 2 \cdot \cos (\pi s-(\pi(l-1) / 2)), \\
0 \\
0 \\
& (-1)^{l} \cdot 2 \cdot \sin (2 \pi s)
\end{array}\right] \cdot\left[\begin{array}{l}
|f|_{1}^{s-(n / 4)}\left(x^{\prime}\right) \\
|f|_{2}^{s-(n / 4)}\left(x^{\prime}\right) \\
|f|_{3}^{s-(n / 4)}\left(x^{\prime}\right)
\end{array}\right],
$$

for $l=2,1,4$ and 8 in the case of 1$)-i$), 2)-i), 3)-i) and 4)-i), respectively.
In the case of 1)-ii), 3)-ii), and 4)-ii), the open set $V_{R}-\{f=0\}$ decomposes into two connected components $V_{ \pm}=\{f(x) \gtrless 0\}$. We can define $|f|_{ \pm}^{s}(x)$ in the same way as (9) for a generic $s \in C$. The Fourier transform of $|f|_{ \pm}^{s}(x)$ is as follows:
(11) $\int\left[\begin{array}{l}|f|_{+}^{s}(x) \\ |f|_{-}^{s}(x)\end{array}\right] \exp \left(-\sqrt{-1}\left\langle x, x^{\prime}\right\rangle\right) d x$

$$
\begin{aligned}
= & (2 \pi)^{3 l+2} \cdot \Gamma(s+1) \Gamma\left(s+\frac{l+3}{2}\right) \Gamma\left(s+\frac{2 l+3}{2}\right) \Gamma\left(s+\frac{3 l+4}{2}\right) \cdot 4^{2 s+n / 4} \\
& \cdot\left[\begin{array}{c}
(-1)^{l / 2} \cdot 2 \cdot \sin (-2 \pi s), \\
\left(1+(\sqrt{-1})^{l}+(\sqrt{-1})^{2 l}+(\sqrt{-1})^{3 l}\right) \cdot 2 \cdot \sin (\pi s),(-1)^{l / 2} \sin (2 \pi s)
\end{array}\right] \\
& \cdot\left[\begin{array}{l}
|f|_{+}^{-s-(n / 4)}\left(x^{\prime}\right) \\
|f|_{-}^{-s-(n / 4)}\left(x^{\prime}\right)
\end{array}\right]
\end{aligned}
$$

for $l=2,4$ and 8 in the case of 1$)-\mathrm{ii}), 3)-\mathrm{ii}$) and 4$)-\mathrm{ii})$, respectively.
In the case of 1)-iii) and 3)-iii), the open set $V_{\boldsymbol{R}}-\{f=0\}$ is a $\boldsymbol{G}_{\boldsymbol{R}^{-}}^{+}$ orbit and we can define $|f|^{s}(x)$ in the same way as (9) for a generic $s \in \boldsymbol{C}$. The Fourier transform of $|f|^{s}(x)$ is as follows:
(12) $\int|f|^{s}(x) \exp \left(-\sqrt{-1}\left\langle x, x^{\prime}\right\rangle\right) d x$

$$
\begin{aligned}
= & (2 \pi)^{3 l+2} \cdot \Gamma(s+1) \Gamma\left(s+\frac{l+3}{2}\right) \Gamma\left(s+\frac{2 l+3}{2}\right) \Gamma\left(s+\frac{3 l+4}{2}\right) 4^{2 s+n / 4} \\
& \cdot 4 \cdot \sin (\pi s) \cdot \cos (\pi s) \cdot|f|^{-s-(n / 4)}\left(x^{\prime}\right)
\end{aligned}
$$

for $l=2$ and 4 in the case of 1 -iii) and 3)-iii), respectively.

References

[1] J. Igusa: A classification of spinors up to dimension twelve. Amer. J. Math., 92, 997-1028 (1970).
[2] N. Jacobson: Exceptional Lie Algebras. Dekker (1971) (lecture note).
[3] T. Kimura: The b-functions and holonomy diagrams of irreducible prehomogeneous vector spaces (preprint).
[4] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya. Math. J., 65, 1-155 (1977).
[5] M. Sato and T. Shintani: On zeta functions associated with prehomogeneous vector spaces. Ann. of Math., 100, 131-170 (1974).

