17. Some Prehomogeneous Vector Spaces with Relative Invariants of Degree Four and the Formula of the Fourier Transforms

By Masakazu MURO

Department of Mathematics, Kochi University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1980)

In this article, we shall investigate the relative invariant f(x) of a regular prehomogeneous vector space (G, V) when it is one of the following ones; 1) $SL(6) \times GL(1)$ $(\Lambda_3 \times \Lambda_1)$, 2) $Sp(3) \times GL(1)$ $(\Lambda_3 \times \Lambda_1)$, 3) $Spin(12) \times GL(1)$ ((half-spin rep.) $\times \Lambda_1$), 4) $E_7 \times GL(1)$ ((56 dim. rep.) $\times \Lambda_1$), where Λ_i is the representation on the space of the skew-symmetric tensors of rank *i*. The polynomial f(x) has the following form, $(1) \qquad f(x) = (x_0 y_0 - \langle X, Y \rangle)^2 + 4x_0 N(Y) + 4y_0 N(X) - 4\langle X^*, Y^* \rangle$.

Here, $x = (x_0, y_0, X, Y) \in C \oplus C \oplus C^m \oplus C^m$ and $\langle X, Y \rangle$ is some bilinear form in X and Y, N(X) is some polynomials in X, and $X \mapsto X^*$ is some polynomial mapping from the X-space into itself.

We shall calculate the Fourier transform of the hyperfunction $|f(x)|^s$ for a generic $s \in C$. As shown in [5], the formula of the Fourier transform gives the functional equation of the local zeta function associated with the prehomogeneous vector spaces.

1. Let u_1, \dots, u_6 be a basis of the six-dimensional complex vector space E with the natural action of $G = SL(6) \times GL(1)$, i.e., $(u_1, \dots, u_6) \mapsto C_2(u_1, \dots, u_6)^t g_1$ for $(g_1, c) \in SL(6) \times GL(1)$. We denote by V(20) the vector space of the skew-symmetric tensors on E of rank 3 and x_{ijk} denotes the coefficient of $u_i \wedge u_j \wedge u_k$. The complex algebraic group $SL(6) \times GL(1)$ acts on V(20), and it is a regular prehomogeneous vector space. We identify V(20) and $C \oplus C \oplus M(3, C) \oplus M(3, C)$ by

 $\begin{array}{c} x_{0} = x_{123} & y_{0} = x_{456} \\ X = \begin{pmatrix} x_{423}, x_{143}, x_{124} \\ x_{523}, x_{153}, x_{125} \\ x_{623}, x_{163}, x_{126} \end{pmatrix} & Y = \begin{pmatrix} x_{156}, x_{416}, x_{451} \\ x_{256}, x_{426}, x_{453} \\ x_{356}, x_{436}, x_{453} \end{pmatrix}. \\ \\ \end{array}$

By setting $\langle X, Y \rangle = \text{tr} (X \cdot Y)$, $N(X) = \det X$, and $X^* = \text{the cofactor}$ matrix of X, f(x) is an irreducible relatively invariant polynomial on the prehomogeneous vector space $(G, V) = (SL(6) \times GL(1), V(20))$ with the character $\chi(g_1, c) = c^{12}$. This is the prehomogeneous vector space 1). We define the symplectic group Sp(3) as the subgroup of SL(6) consisting of the elements which leave $u_1 \wedge u_4 + u_2 \wedge u_5 + u_3 \wedge u_6$ invariant. When we set

(3)
$$V(14) = \{(x_0, y_0, X, Y) \in V(20); {}^{t}X = X, {}^{t}Y = Y\},\$$

(2)

V(14) is an invariant subspace under the actions of $Sp(3) \times GL(1)$, and $(G, V) = (Sp(3) \times GL(1), V(14))$ is a regular prehomogeneous vector space. The restriction of f(x) on V(14) is a relative invariant corresponding to the character $\chi(g_1, C) = C^{12}$. This is the prehomogeneous vector space 2).

Next consider the even half-spin representation of the complex spinor group **Spin**(12). We denote by V(32) the space of skew-symmetric tensors of even rank on the six dimensional complex vector space E and let $\{e_1, \dots, e_6\}$ be a basis of E. We denote an element of V(32) by (4) $x = x_0 + \sum_{i < j} x_{ij} e_i e_j + \sum_{i < j} y_{ij} e_{ij}^* + y_0 e_L$,

where $e_L = e_1 e_2 e_3 e_4 e_5 e_6$ and e_{ii}^* is the element of the form $e_k e_l e_m e_n$ satisfying $e_i e_j e_{ij}^* = e_L$, and X, Y denote the 6×6 skew-symmetric matrices whose *i*-*j* entries are x_{ij} and y_{ij} for i < j, respectively. Then **Spin**(12) acts on V(32) as the even half-spin representation (see J. Igusa [1]), and $(G, V) = (Spin(12) \times GL(1), V(32))$ is a regular prehomogeneous vector space. Here GL(1) acts on V(32) by the multiplication. The polynomial f(x) is an irreducible relative invariant by setting $\langle X, Y \rangle =$ $-\operatorname{tr}(X \cdot Y)/2$, $N(X) = \operatorname{Pff}(X)$ and X^* is the 6×6 skew-symmetric matrix whose *i*-*j* entry is $\pm Pff(X_{ij})$ for $i \leq j$, where X_{ij} is the 4×4 skewsymmetric matrix obtained by crossing out the i-th and j-th columns The character of f(x) is $\chi(g_1, c) = c^4$ for $(g_1, c) \in Spin(12)$ and rows. This is the prehomogeneous vector space 3). Here, Pff(X) $\times GL(1).$ is the Pffafian of X normalized by

$$Pff \begin{pmatrix} -1^{1} & & \\ & -1^{1} & \\ & & \ddots & \\ & & & -1^{1} \end{pmatrix} = 1.$$

Next we shall consider the exceptional complex algebraic group E_7 and the 56-dimensional representation of E_7 . The representation space V(56) is

(5) $\{(x_0, y_0, X, Y); x_0, y_0 \in C \text{ and } X, Y \in \mathcal{J}\},\$ where \mathcal{J} is the exceptional simple Jordan algebra over C (see N. Jacobson [2]). An element X of \mathcal{J} is denoted by

(6)
$$X = \begin{pmatrix} \xi_1, \bar{x}_3, x_2 \\ x_3, \xi_2, \bar{x}_1 \\ \bar{x}_2, x_1, \xi_3 \end{pmatrix} \qquad \begin{cases} \xi_1, \xi_2, \xi_3 \in C \\ x_1, x_2, x_3 \in \mathfrak{Q}, \end{cases}$$

where \mathfrak{L} is the Cayley algebra over C. We define the norm of X by $\det X = \xi_1 \xi_2 \xi_3 + \operatorname{tr} (x_1 x_2 x_3) - \sum \xi_i x_i \overline{x}_i$ and the trace of X by $\operatorname{tr} (X) = \xi_1 + \xi_2 + \xi_3$. We set $S(X) = (\operatorname{tr} (X)^2 - \operatorname{tr} (X^2))/2$. Then $(G, V) = (E_7 \times GL(1), (V56))$ is a regular prehomogeneous vector space. Here GL(1) acts on V(56) by the multiplication. The polynomial f(x) is an irreducible relative in-

variant by setting $\langle X, Y \rangle = \text{tr} (XY + YX)/2, X^* = X^2 - \text{tr} (X) \cdot X + S(X) \cdot I$, and $N(X) = \det X$. The character of f(x) is $\chi(g_1, c) = c^*$ for $(g_1, c) \in E_7 \times GL(1)$. This is the prehomogeneous vector space 4).

2. The *b*-function of $f^{s}(x)$ is calculated by micro-local calculus (see T. Kimura [3]), and it is

(7)
$$b(s) = (s+1)\left(s + \frac{l+3}{2}\right)\left(s + \frac{2l+3}{2}\right)\left(s + \frac{3l+4}{2}\right),$$

for 1) l=2, 2) l=1, 3) l=4, 4) l=8, respectively.

3. The prehomogeneous vector spaces 1)-4) have the following real forms (G_R, V_R) .

No. 2] Prehomogeneous Vector Spaces with Relative Invariants

$$V_{R} = \{(x_{0}, y_{0}, X, Y); x_{0}, y_{0} \in R. X, Y \in \mathcal{J}^{s}\}.$$

Here, E_{τ}^{d} and E_{τ}^{s} are real forms of E_{τ} whose Killing forms have the signature -25 and 7, respectively, and \mathcal{J}^{a} and \mathcal{J}^{s} are the spaces of 3×3 octanion Hermitian matrices whose entries are Cayley division numbers and split Cayley numbers over R, respectively.

4. We define the inner product on V by

$$\langle x, x'
angle = x_{\scriptscriptstyle 0} y'_{\scriptscriptstyle 0} - x'_{\scriptscriptstyle 0} y_{\scriptscriptstyle 0} - \langle X, Y'
angle + \langle X', Y
angle.$$

We define the real-valued inner product on V_R by restricting this on V_R and by multiplying a constant of absolute value one if necessary. We denote by dx the Euclidian measure on V_R satisfying

$$(2\pi)^n u(x'') = \iint u(x) \exp\left(\sqrt{-1}\langle x, x'\rangle\right) \exp\left(-\sqrt{-1}\langle x', x''\rangle\right) dx dx',$$

where $n = \dim V_{\mathbb{P}}$.

The open set $V_R - \{f=0\}$ decomposes into the following three connected components, which are G_R^+ -orbits.

$$(8) \quad V_{1} = G_{R}^{+} \cdot \left(1, 0, (0), \left(^{1} - 1_{-1}\right)\right) \\ \left(\operatorname{resp.} G_{R}^{+}\left(1, 0, (0), \left(^{1} 1_{-1}\right)\right); G_{R}^{+} \cdot \left(0, 0, \left(^{-1} \frac{1}{0}_{0}\right), \left(^{-1} \frac{1}{0}_{0}\right)\right)\right) \\ V_{2} = G_{R}^{+} \cdot \left(1, 0, (0), \left(^{1} 1_{-1}\right)\right) \\ \left(\operatorname{resp.} G_{R}^{+} \cdot \left(1, 0, (0), \left(^{1} 1_{1}\right)\right); \\ G_{R}^{+} \cdot \left(1, 1, \left[^{-1} - 1^{1}_{-1} \frac{1}{1}\right], \left[^{-1} - 1^{1}_{1} - 1\right]\right)\right) \\ V_{3} = G_{R}^{+} \cdot \left(1, 0, (0), \left(^{1} 1_{1}\right)\right) \\ \left(\operatorname{resp.} G_{R}^{+} \cdot \left(-1, 0, (0), \left(^{1} 1_{1}\right)\right); G_{R}^{+} \cdot (1, 1, (0), (0))\right) \\ \end{array}$$

in the case of 1)-i) (resp. 2)-i) and 4)-i); 3)-i)).

The hyperfunction

(9)
$$|f|_{i}^{s}(x) = \begin{cases} |f(x)|^{s} & x \in V_{i} \\ 0 & x \notin V_{i} \end{cases}$$

is defined first for Re $(s) \gg 0$ and continued to *C* meromorphically. By identifying V_R and V_R^* by the inner product $\langle x, x' \rangle$, $|f|_i^s(x')$ is defined on V_R^* . The Fourier transform of $|f|_i^s(x)$ is the following:

$$(10) \int \begin{bmatrix} |f|_1^s(x) \\ |f|_2^s(x) \\ |f|_3^s(x) \end{bmatrix} \cdot \exp(\sqrt{-1}\langle x, x' \rangle) dx \\ = (2\pi)^{3l+2} \cdot \Gamma(s+1) \Gamma\left(s+\frac{l+3}{2}\right) \Gamma\left(s+\frac{2l+3}{2}\right) \Gamma\left(s+\frac{3l+4}{2}\right) \cdot 4^{2s+n/4}$$

M. Muro

$$\begin{bmatrix} (-1)^{l} \cdot 2 \cdot \sin(2\pi s), & (2+(-1)^{l}) \cdot 2 \cdot \cos(\pi s - (\pi (l-1)/2)), \\ 0, & (\sqrt{-1})^{l-1} + (-\sqrt{-1})^{l-1} + 2\cos(2\pi s - (\pi (l-1)/2)), \\ 0, & 2 \cdot \cos(\pi s - (\pi (l-1)/2)), \\ & 0 \\ & 0 \\ (-1)^{l} \cdot 2 \cdot \sin(2\pi s) \end{bmatrix} \cdot \begin{bmatrix} |f|_{1}^{-s - (n/4)}(x') \\ |f|_{2}^{-s - (n/4)}(x') \\ |f|_{3}^{-s - (n/4)}(x') \end{bmatrix},$$

for l=2, 1, 4 and 8 in the case of 1)-*i*), 2)-*i*), 3)-*i*) and 4)-*i*), respectively.

In the case of 1)-ii), 3)-ii), and 4)-ii), the open set $V_R - \{f=0\}$ decomposes into two connected components $V_{\pm} = \{f(x) \ge 0\}$. We can define $|f|_{\pm}^s(x)$ in the same way as (9) for a generic $s \in C$. The Fourier transform of $|f|_{\pm}^s(x)$ is as follows:

$$(11) \int \begin{bmatrix} |f|_{*}^{s}(x) \\ |f|_{-}^{s}(x) \end{bmatrix} \exp(-\sqrt{-1}\langle x, x' \rangle) dx$$

= $(2\pi)^{3l+2} \cdot \Gamma(s+1)\Gamma\left(s+\frac{l+3}{2}\right)\Gamma\left(s+\frac{2l+3}{2}\right)\Gamma\left(s+\frac{3l+4}{2}\right) \cdot 4^{2s+n/4}$
 $\cdot \begin{bmatrix} (-1)^{1/2} \cdot 2 \cdot \sin(-2\pi s), & 0\\ (1+(\sqrt{-1})^{l}+(\sqrt{-1})^{2l}+(\sqrt{-1})^{sl}) \cdot 2 \cdot \sin(\pi s), & (-1)^{l/2} \sin(2\pi s) \end{bmatrix}$
 $\cdot \begin{bmatrix} |f|_{+}^{s-(n/4)}(x')\\ |f|_{-}^{s-(n/4)}(x') \end{bmatrix}$

for l=2, 4 and 8 in the case of 1)-ii), 3)-ii) and 4)-ii), respectively.

In the case of 1)-iii) and 3)-iii), the open set $V_R - \{f=0\}$ is a G_R^+ -orbit and we can define $|f|^s(x)$ in the same way as (9) for a generic $s \in C$. The Fourier transform of $|f|^s(x)$ is as follows:

$$(12) \int |f|^{s}(x) \exp(-\sqrt{-1}\langle x, x' \rangle) dx = (2\pi)^{3l+2} \cdot \Gamma(s+1)\Gamma\left(s+\frac{l+3}{2}\right) \Gamma\left(s+\frac{2l+3}{2}\right) \Gamma\left(s+\frac{3l+4}{2}\right) 4^{2s+n/4} \cdot 4 \cdot \sin(\pi s) \cdot \cos(\pi s) \cdot |f|^{-s-(n/4)}(x'),$$

for l=2 and 4 in the case of 1)-iii) and 3)-iii), respectively.

References

- J. Igusa: A classification of spinors up to dimension twelve. Amer. J. Math., 92, 997-1028 (1970).
- [2] N. Jacobson: Exceptional Lie Algebras. Dekker (1971) (lecture note).
- [3] T. Kimura: The b-functions and holonomy diagrams of irreducible prehomogeneous vector spaces (preprint).
- [4] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya. Math. J., 65, 1-155 (1977).
- [5] M. Sato and T. Shintani: On zeta functions associated with prehomogeneous vector spaces. Ann. of Math., 100, 131–170 (1974).