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Introduction. The structure of algebraic threefolds with non-
positive Kodaira dimension has been studied by Ueno [8], [9] and
Viehweg [10]. Their results are based on the semi-positivity theorem
of the direct image sheaf of the relative canonical sheaf of a fibre space
([4]). This is a consequence of the theory of variation of Hodge
structure. Therefore it is easy to show that the similar results hold
for compact Kihler manifolds of dimension three with

_
0.

On the other hand, Atiyah [1] and Blanchard [2] showed that the
semi-positivity theorem does not necessarily hold for non-Khler fibre
spaces. Hence it is expected that the structure of non-Khler mani-
folds is different from that of K/ihler manifolds.

The main purpose of the present note is to announce structure
theorems of compact complex manifolds of dimension three with _0
which have non-trivial Albanese tori. Contrary to the case of analytic
surfaces, we have i.nteresting new phenomena.

1. Preliminaries. In the present note, by an analytic threefold
M we mean a compact complex manifold of dimension three. We use
the following notation"

p(M)-h(M, K), P(M)--h(M, K), m- 1, 2, 3,...,
g(M) h(M, 9), ,= 1, 2, .., dim M,
q(M)-- hi(M, (),

where K is the canonical bundle o M and 9 is the shea of germs
o holomorphic ,-orms on M. These are bimeromorphic invariants.
Put N(M)=(m_ 1 ]P(M)_I}. The Kodaira dimension (M) of M is
defined by

( max )K(M), i N(M) =/=
(M)=()

where (M) is a meromorphic mapping of M into P(C), N-P(M)
--1, associated wih the m-canonical system ImKl of M. Hence, (M)--- i and only if P(M)-0 for m=1,2,..., and (M)--0 i and
only i P(M)_I or m-1,2, ..., and the equality holds for some
positive integer m.

According to Fujiki [3], we use the following
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Definition 1. A compact complex manifold M is in a subcategory
C of the category of compact complex manifolds if M is a meromorphic
image of a compact Khler manifold N.

Note that, in the above definition, dim N may be greater than
dim M. If a compact complex manifold M is in C, then the Hodge
decomposition theorem of the cohomologygroup H*(M, C) holds. (See
[7], [9].)

With any compact complex manifold M we can associate the
Albanese torus A(M) and the Albanese mapping " M--A(M). ([2],
[7], [9].) Put t(M)=dim A(M). The number t(M) is called the Albanese
dimension of M. It is a bimeromorphic invariant. By virtue of the
construction of the Albanese torus ([2]), we have

t(M)

_
h(M, d()

_
gl(M).

If M is in C, the both equalities hold.
Note that for the Albanese mapping " MA(M), fibres of " M(M) may not be connected. Let

a" M a(M)

be the Stein factorization of a so that /" M-+W has connected fibres.
The fibre space " M-W is called the Albanese fibra$ion.

Let us recall the bimeromorphic classification of analytic surfaces
with _0 due to Kodaira [5]. In the following table we assume that
all surfaces contain no exceptional curves of the first kind.

Theorem. If (S)--O, g(S)

_
1, then Albanese mapping a" S-A(S)

is sur]ective and has connected fibres. If g(S)-2, then is isomor-
phic. If g(S).-1, then " S--A(S) has a structure of an analytic fibre
bundle whose fibre is an elliptic curve.

Table I. Classification table of analytic surfaces with -0

1

gl Pa

1 1

1 1

1

1

1

1

structure

complex torus

elliptic surface with trivial canonical bundle

hyperelliptic surface

elliptic surface of class VII0 with trivial K
for a positive integer m_>2

K3 surface

Enriques surface

The number b(S)is the first Betti number of S. By definition,
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analytic surface S belongs to the class VII0, i b(S)= 1, q(S)= 1, pq(S)
--0.

Table II. Classification table of analytic surfaces with

gl

gl

structure

Pl-bundle over a curve of genus g

surface of class VII0

P or Pl-bundle over P1

Hence, if (S)=- o and S does not belongs to the class VII0, then
S is algebraic and is rational or ruled.

2. Main Theorems. Let us state the structure theorems of ana-
lytic threefolds with _0 which have non-trivial Albanese tori.

Main Theorem 1. Let M be an analytic threefold with (M)=0
and t(M)

_
1.

1) If Albanese mapping " M-A(M) is sur]ective, then has
connected fibres and M has the following properties.

a) If t(M)--3, then is bimeromorphic.
b) If t(M)--2, then a’M-A(M) is bimeromorphically equivalent

to an analytic fibre bundle over A(M) whose fibre is an elliptic curve.
c) If t(M)=l, then any smooth fibre Mx of the Albanese mapping

is a surface with (Mx)=0. Moreover, if M belongs to C, then " M-A(M) is bimeromorphically equivalent to an analytic fibre bundle
over A(M) whose fibre is a surface with =0.

2) If the Albanese mapping is not sur]ective, the image a(M)
=C is a non-singular curve of genus g_2. The Albanese mapping
has connected fibres and a general fibre Mx of is bimeromorphically
equivalent to a complex torus, or a K3 surface. In this case, M does
not belong to .

Main Theorem 2. Let M be an analytic threefold with (M)
c and t(M)

_
1. Then, we have dim a(M) 2.

1) If dim a(M)--2, then a general fibre of the Albanese fibration

" M--.S is P.
2) If dim a(M)--1, then the image a(M)=C of the Albanese

mapping a" M--A(M) is a non-singular curve, " M-C has connected
fibres, and a general fibre M of is a surfaces with =- o, or bi-
meromorphically equivalent to a complex torus or a K3 surface.
Moreover, if M belongs to the class C, general fibres of are rational
or ruled surfaces.

Remark. 1) In Main Theorem 1, 1), c), if M does not belong to, then a’M-A(M) is not necessarily bimeromorphically equivalent
to an analytic fibre bundle.
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2) In Main Theorem 1, 2), the curve C has arbitrary genus g_>2.
Example. Using Atiyah’s method [1], we construct complex

analytic families of analytic threefolds with <_0, which show strange
phenomena of analytic threefolds.

Let z" CP be a double covering ramified at 2g-2 points so that
C is a hyperelliptic curve of genus g. Put L-*Ge,(1), F-L. Hence
K--L-. For any point t e Pic (C), we let [t] be the line bundle of
degree zero on C corresponding to the point t. Put F-F(R)[t]. Let
ff be the line bundle over C X Pic (C) such that the restriction ffl is
isomorphic to F. Assume m>_2g. Then F is generated by its global
sections and h(F)-m--g+l, h(F)-O. Hence p.ff is locally free
where p" C >< Pic (C)Pic (C) is the natural projection. Then there
exists an open neighbourhood U of the origin of Pic (C) and two holo-
morphic sections , of 5 over p-(U) such that --1-,,
considered as elements of H(C, F), have no common zero on C for any
t e U. Put

0) 0 0 o)0 1 --I 0 --I 0 --I
Since rank (,= aJ)<_l for (a, a, a, a) e R implies a--a--a--a--O,

A,--_ ZI,(**)is a lattice of the fibre of V,=F,F, at each point t

of C. Since A acts each fibre of V, as translations, we have a quotient
manifold M--Vt/A,. Let t" M,C be the natural projection. From
our construction it is easily shown that is smooth and we have

/c K(R)*t K *F.
Moreover -(.Je Mt is a complex unalytic family over U. We let

f" C--C be u double covering rumified at the divisor (8) where 8 is
a generic element of H(C, L). Then K0 f*L-/. Put Mr----M X c C.
Then ,"/Q,-+ is a smooth morphism and we have

a,/=* f*F-/, K=* f*L-/-u[--2t].
Hence, if we put k=21-g+ 1, then we have

K =*f*[-2].
Put U’= U Pic (M)o where Pic (M)o is the set of all points of finite
order in Pic (M). The set U’ is dense in U and so is U* U- U’. For
each point t e U’, we have (M)=O, and for each point u e U, we have
(M)=-oo. Since =ev/ is a complex analytic family, this
shows that the Kodaira dimension is not a deformation invariant.
Moreover, for any point t e U’,

1, if 2mt=O in Pic (C),P(M)
0, otherwise.

Hence plurigenera are not deformation invariant. (Cf. [6].) Moreover,
for a sufficiently large positive integer n, we can find a sequence of
points Xn, Xn/, X/.,’’’, in U which converge to the origen O such that
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0, mkP(M)
1, m=k.

Hence we have the following:
For compact complex threefolds with =0, we cannot find a posi-

tire integer m such P=I, even if they are in the same complex
analytic family.

Note that, from Table I we infer P(S)= 1 for any analytic surface
with (S)=0.

3. Fibre space over a curve. To prove the above main theorems,
the following theorem plays an important role.

Theorem. Let V--C be a sur]ective morphism from an analytic

threefold V to a non-singular curve C with connected fibres. Then we
have

(V) >_(V)+(C)
for a general fibre Vx of , if Vx is not bimeromorphically equivalent
to a complex torus nor a K3 surface.
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