111. On Certain Averages of $\omega(n)$

By Leo Murata
Department of Mathematics, Faculty of Science, Tokyo Metropolitan University (Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1980)

Let $\omega(n)$ be the number of distinct prime factors of the natural number n, and $\Omega(n)$ be the total number of prime factors of n. We observe their averages for $M \subseteq N$ and x :

$$
V(M, x)=\frac{\sum_{n \in M(x)} \omega(n)}{|M(x)|}, \quad W(M, x)=\frac{\sum_{n \in M(x)}\{\Omega(n)-\omega(n)\}}{|M(x)|}
$$

where $M(x)=\{n ; n \in M, n \leqslant x\}$ and || designates the cardinal. For $M=N$, which can be regarded as the "standard" case, it is well-known that (cf. [1, Theorem 430]) :

$$
\begin{aligned}
& V(N, x)=\log \log x+A+O\left(\frac{1}{\log x}\right) \\
& W(N, x)=\sum_{p} \frac{1}{p(p-1)}+O\left(x^{-1 / 2}\right)
\end{aligned}
$$

where \sum_{p} denotes the sum over all primes, $A=\gamma+\sum_{p}\{\log (1-1 / p)$ $+1 / p\}$, and γ is Euler's constant. A few results are known as to the value of $V(M, x)$ or that of $W(M, x)$ for specially chosen M. For example, H. Halberstam ([2]) proved that if $f(x)$ is an irreducible polynomial with integral coefficients and

$$
M^{*}=\{f(p) ; p: \text { rational prime }\}
$$

then

$$
V\left(M^{*}, x\right) \sim \log \log x
$$

but no estimate is obtained for error terms for this M^{*}.
Our aim is to observe $V(M, x)$ and $W(M, x)$ for other types of M. First we take up the case

$$
N_{d}=\{n ; 1 \leqslant\|n\| \leqslant d\}
$$

where d is a fixed positive integer and $\|n\|=\min _{p: \text { prime }}(|n-p|)$, the distance from n to its nearest prime.

Theorem 1.

$$
\begin{align*}
V\left(N_{d}, x\right)= & \log \log x+\left\{A+\sum_{p} \frac{1}{p(p-1)}-\log 2+\beta_{a}(x)\right\} \tag{1}\\
& +d^{2} \cdot D_{d} \cdot O\left(\frac{\log \log x}{\log x}\right)
\end{align*}
$$

where D_{d} is a computable constant depending only on d, given more precisely later on, and $\beta_{a}(x)$ is a function satisfying

$$
\frac{1}{2}+O\left(\frac{\log \log x}{\log x}\right) \leqslant \beta_{d}(x) \leqslant 1+O\left(\frac{\log \log x}{\log x}\right)
$$

where constants implied by O-symbols are absolute.
Through a numerical calculation we obtain

$$
V\left(N_{a}, x\right)-V(N, x) \geqslant \sum_{p} \frac{1}{p(p-1)}-\log 2+\frac{1}{2}+O\left(\frac{\log \log x}{\log x}\right)>0.5799
$$

for sufficiently large x. Thus we can say that, if we restrict the domain of average to those composite integers in d-neighbourhoods of prime numbers, the corresponding average of $\omega(n)$ will be definitely larger than the "standard" average.

Concerning the function $W(M, x)$, we obtain
Theorem 2.

$$
W\left(N_{d}, x\right)=\sum_{p} \frac{1}{(p-1)^{2}}+d^{2} \cdot D_{d} \cdot O\left(\frac{1}{\log x}\right)
$$

where D_{a} is same to that of Theorem 1 and the constant implied by O-symbol is absolute.

This shows

$$
W\left(N_{d}, x\right)-W(N, x) \sim \sum_{p} \frac{1}{p(p-1)^{2}}>0.6019
$$

We can generalize these theorems through regarding the d to be an increasing function $f(x)$ of x :

Theorem 3. Let ε be an arbitrary positive constant, R be the minimum natural integer satisfying $\varepsilon>1 / R, f(x)$ be a positive valued increasing function such that $f(x)=O\left((\log x)^{1-\varepsilon}\right)$ as $x \rightarrow \infty$, and $M_{f}(x)$ be a set

Then

$$
M_{f}(x)=\{n ; 1 \leqslant\|n\| \leqslant f(x)\} .
$$

$$
\begin{aligned}
V\left(M_{f}(x), x\right)= & \log \log x+\left\{A+\sum_{p} \frac{1}{p(p-1)}-\log 2+\gamma_{f}(x)\right\} \\
& +O\left((\log x)^{1-R c}(\log \log x)(\log \log \log x)^{R-1}\right),
\end{aligned}
$$

where $\gamma_{f}(x)$ is a function satisfying

$$
\frac{1}{2}+O\left(\frac{\log \log x}{\log x}\right) \leqslant \gamma_{f}(x) \leqslant 1+O\left(\frac{\log \log x}{\log x}\right)
$$

and the constants implied by O-symbols depend at most on ε.
Theorem 4. Under the same assumptions of Theorem 1, we have

$$
W\left(M_{f}(x), x\right)=\sum_{p} \frac{1}{(p-1)^{2}}+O\left((\log x)^{1-R s}(\log \log \log x)^{R-1}\right)
$$

where the constant implied by O-symbol depends only on ε.
In this paper we give a sketch of the proof of Theorem 1 only.
Let \boldsymbol{P} be the set of all primes, d be a fixed positive integer, and we define for integar i, j or b :
$P_{i}(x)=\{n ; n=p+i, p \in \boldsymbol{P}, n \leqslant x\}$, i.e. a sequence of shifted primes,
$I_{j}(x)=\left\{n ; n\right.$ is contained in $j u s t j$ sequences among $P_{-d}(x), \cdots$, $\left.P_{-1}(x), P_{1}(x), \cdots, P_{d}(x)\right\}$,

$$
\begin{aligned}
& Q_{j}(x)=I_{j}(x) \cap \boldsymbol{P}, \\
& \boldsymbol{P}_{b}(x)=\{p ; p \in \boldsymbol{P}, p+b \in \boldsymbol{P}, p \leq x\} .
\end{aligned}
$$

Then we have

Lemma 1.

$$
\sum_{n \in P_{i}(x)} \omega(n)=\left\{\log \log x+A+\sum_{p} \frac{1}{p(p-1)}-\log 2+\alpha_{i}(x)\right\} \cdot \operatorname{Li}(x),
$$

where the function $\alpha_{i}(x)$ satisfies

$$
\frac{1}{2}+O\left(\frac{\log \log x}{\log x}\right) \leqslant \alpha_{i}(x) \leqslant 1+O\left(\frac{\log \log x}{\log x}\right)
$$

and the constants implied by 0 -symbols are absolute.

Lemma 2.

$$
\sum_{\substack{q<x \\ q \in P}} \sum_{\substack{p \in P_{b}(x) \\ p=a(q)}} 1=D_{d} \cdot O\left(\frac{x \log \log x}{\log ^{2} x}\right)
$$

where

$$
D_{d}=\max _{\substack{2 d \geqslant b \geqslant 1 \\ b: \text { even }}}\left\{\prod_{p \mid 万}\left(1-\frac{1}{p}\right)^{-1}\right\},
$$

and the constant implied by O-symbol is absolute.
In order to prove Lemma 1, we have to utilize Bombieri's theorem ([3]), Brun-Titchmarsh's theorem ([5, Theorem 3.8]), and M. Goldfeld's result ([4]). Lemma 2 can be deduced from the following two estimates ([5, Corollary 2.4.1] and [5, Theorem 3.11]):

$$
\begin{equation*}
\sum_{\substack{p \in P(x) \\ p=l(\operatorname{lod} k)}} 1=\left(\prod_{p \mid k b} \frac{p}{p-1}\right) \cdot O\left(\frac{x}{\varphi(k) \log ^{2}(x / k)}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left|\boldsymbol{P}_{b}(x)\right|=8\left(\prod_{p>2} \frac{p(p-2)}{(p-1)^{2}}\right)\left(\prod_{\substack{p \mid b \\ p \neq 2}} \frac{p-1}{p-2}\right) \cdot O\left(\frac{x}{\log ^{2} x}\right) \tag{3}
\end{equation*}
$$

Now return to the proof of Theorem 1. It is easy to see that

$$
\begin{equation*}
\left|N_{d}(x)\right|=\sum_{|i|=1}^{d}\left|P_{i}(x)\right|-\sum_{j=2}^{2 d}(j-1)\left|I_{j}(x)\right|-\sum_{j=1}^{2 d}\left|Q_{i}(x)\right|, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n \in \mathcal{N d}_{d}(x)} \omega(n)=\sum_{|i|=1}^{d} \sum_{n \in P_{P_{i}(x)}} \omega(n)-\sum_{j=2}^{2 d}(j-1) \sum_{n \in I_{j}(x)} \omega(n)-\sum_{j=1}^{2 d}\left|Q_{j}(x)\right| \tag{5}
\end{equation*}
$$

Concerning (4), we have obviously,

$$
\sum_{|i|=1}^{d}\left|P_{i}(x)\right|=2 d\{\pi(x)+O(1)\}
$$

and from the definitions of $I_{j}(x)$ and $Q_{j}(x)$, we obtain by (2) and (3) that

$$
\begin{aligned}
& \sum_{j=2}^{2 d}(j-1)\left|I_{j}(x)\right|=2 d \cdot d^{2} \cdot D_{a} \cdot O\left(\frac{x}{\log ^{2} x}\right), \\
& \sum_{j=1}^{2 d}\left|Q_{j}(x)\right|=2 d \cdot D_{d} \cdot O\left(\frac{x}{\log ^{2} x}\right)
\end{aligned}
$$

Lemma 1 gives an estimate of the first term of (5):

$$
\sum_{|i|=1}^{d} \sum_{n \in P_{i}(x)} \omega(n)=2 d\left\{\log \log x+A+\sum_{p} \frac{1}{p(p-1)}-\log 2+\sum_{|i|=1}^{d} \alpha_{i}(x)\right\} \cdot \operatorname{Li}(x) .
$$

Furthermore,

$$
\sum_{j=2}^{2 d}(j-1) \sum_{n \in I_{J}(x)} \omega(n) \leqslant 2 d \sum_{j=2}^{2 d} \sum_{n \in I_{j}(x)} \omega(n)=2 d \sum_{b, c} \sum_{n \in P_{\delta}(x) \cap P_{c}(n)} \omega(n),
$$

where $\sum_{b, c}$ denotes the sum over all such pairings of integers b and c that satisfy $-d \leqslant b<c \leqslant d, b \cdot c \neq 0$. Since

$$
\sum_{n \in P_{b}(x) \cap P_{c}(x)} \omega(n)=\sum_{\substack{q \leq x \\ q \in P}} \sum_{\substack{p \in P_{p}=-\bar{b}(x) \\ p \equiv-D(q)}} 1+O(1)
$$

we obtain by Lemma 2 that

$$
\sum_{j=2}^{2 d}(j-1) \sum_{n \in T_{j}(x)} \omega(n)=2 d \cdot d^{2} \cdot D_{d} \cdot O\left(\frac{x \log \log x}{\log ^{2} x}\right) .
$$

Consequently, from (4) and (5), we obtain

$$
\left|N_{a}(x)\right|=2 d\left\{1+d^{2} \cdot D_{a} \cdot O\left(\frac{1}{\log x}\right)\right\} \frac{x}{\log x}
$$

and

$$
\begin{aligned}
\sum_{n \in N_{d}(x)} \omega(n)= & 2 d\left\{\log \log x+A+\sum_{p} \frac{1}{p(p-1)}-\log 2+\beta_{d}(x)\right. \\
& \left.+d^{2} \cdot D_{d} \cdot O\left(\frac{\log \log x}{\log x}\right)\right\} \frac{x}{\log x}
\end{aligned}
$$

where

$$
\beta_{d}(x)=\frac{1}{2 d} \sum_{|i|=1}^{d} \alpha_{i}(x) .
$$

Theorem 1 can be proved immediately.
The proofs of Theorems 2-4 are accomplished in a similar way as the above, but for Theorems 3 and 4, besides (2) and (3), more precise estimates are required; let g be a positive integer, $b_{i}(1 \leqslant i \leqslant g)$ be integers satisfying $1 \leqslant b_{1}<b_{2} \cdots<b_{g} \leqslant 2 d$, and $\boldsymbol{P}_{b_{1}, \cdots, b_{g}}(x)=\{p ; p \leqslant x$, $\left.p \in \boldsymbol{P}, p+b_{i} \in \boldsymbol{P}, i=1,2, \cdots, g\right\}$, then we have

$$
\begin{gathered}
\left|\boldsymbol{P}_{b_{1}, \ldots, b_{g}}(x)\right|=D_{d}^{g} \cdot O\left(\frac{x}{\log ^{g+1} x}\right) \\
\sum_{\substack{p \in \operatorname{Pin}, \ldots, b g(x) \\
p=l(\bmod k)}} 1=D_{d}^{g}\left(\frac{k}{\varphi(k)}\right)^{g}\left(\prod_{p \mid c} \frac{p}{p-1}\right) \cdot O\left(\frac{x / k}{\log ^{g+1}(x / k)}\right),
\end{gathered}
$$

where D_{d} is as above and constants implied by O-symbols are absolute (both of these two are deduced from [5, Theorem 2.4]).

Our Theorem 1 gives only a range of values of $\beta_{d}(x)$. More precise estimate of $\beta_{d}(x)$ would be obtained if an asymptotic formula of the following form could be proved:

$$
\left|S_{d}(x)\right| \sim C_{d} \pi(x)
$$

where $S_{d}(x)=\{p ; p \in \boldsymbol{P}, p \leqslant x, p+d$ has a prime factor greater than $\sqrt{\bar{x}}\}$, and C_{d} is a constant depending only on d. We have a conjecture that

$$
\left|S_{d}(x)\right| \sim(\log 2) \pi(x)
$$

which would imply

$$
V\left(N_{d}, x\right)-V(N, x) \sim W(N, x)
$$

Remark. I should like to notice that the following asymptotic formula is easy to prove:

$$
\left|T_{a}(x)\right| \sim(\log 2) x
$$

where $T_{d}(x)=\{n ; n \leqslant x, n+d$ has a prime factor greater than $\sqrt{x}\}$.
I am thankful to Prof. M. Tanaka, who gave me an advice on an original version of this paper owing to which I could improve my results.

References

[1] G. H. Hardy and E. M. Wright: The Theory of Numbers. Forth edition, Oxford (1959).
[2] H. Halberstam: On the distribution of additive number-theoretic functions III. J. London Math. Soc., 31, 15-27 (1965).
[3] E. Bombieri: On the large sieve. Mathematika, 12, 201-225 (1965).
[4] M. Goldfeld: On the number of primes p for which $p+a$ has a large prime factor. Ibid., 16, 23-27 (1969).
[5] H. Halberstam and H. E. Richert: Sieve Methods. Academic Press (1974).

