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Let (n) be the number of distinct prime factors of the natural
number n, and tg(n) be the total number of prime factors of n. We
observe their averages for M N and x"

V(M, x)--’(n) W(M, x)-- {/2(n)-o(n)}
]M(x)l IM(x)[

where M(x)={n; ne M, n<x} and[ ]designates the cardinal. For
M=N, which can be regarded as the "standard" case, it is well-known
that (c. [1, Theorem 430])"

(1)V(N, x) log log x +A+O log x
W(N, x) 1 - O(x-/),p(p-- 1)

where denotes the sum over all primes, A=7+{log(1--1/p)
+ l/p}, and is Euler’s constant. A few results are known as to the
value o V(M, x) or that of W(M, x) for specially chosen M. For
example, H. Halberstam ([2]) proved that if f(x) is an irreducible
polynomial with integral coefficients and

M*={f(p) p" rational prime},
then

V(M*, x) log log x,
but no estimate is obtained or error terms 2or this M*.

Our aim is to observe V(M, x) and W(M, x) for other types of M.
First we take up the case

where d is a fixed positive integer and ln min (In-p ]), the distance
p: prime

from n to its nearest prime.
Theorem 1,

{ P(P--1 1) --log2+/(x)}( 1 ) V(N,, x) log log x+ A+

+ d..D, o(.log log
log x

where D is a computable constant depending only on d, given more
precisely later on, and fix(x) is a function satisfying
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/ /
2 log x log x

where constants implied by O-symbols are absolute.
Through a numerical calculation we obtain

V(N, x)--V(N,, x)>/, p(pl-- 1)
--log2+1+0(lg lg x) >0"5799’1ogx

for sufficiently large x. Thus we can say that, if we restrict the
domain of average to those composite integers in d-neighbourhoods of
prime numbers, the corresponding average of w(n) will be definitely
larger than the "standard" average.

Concerning the function W(M, x), we obtain
Theorem 2.

W(N,, x)= 1 d’ ( 1 )(p_l)+ .D.O logx
where D is same to that of Theorem 1 and the constant implied by
O-symbol is absolute..

This shows

W(N, x)- W(N, x) 1
P(P--1)

0.6019.

We can generalize these theorems through regarding the d to be
an increasing function f(x) of x:

Theorem . Let be an arbitrary positive constant, R be the
minimum natural integer satisfying l/R, f(x) be a positive valued
increasing function such that f(x)=O((logx)’-9 as x, and M(x)
be a set

M(x)= {n 1
Then

1 --log 2+,(x)}V(M/x), x) log log x+ A+ p(p 1)
+ O((log x)-*(log log x)(log log log x)’- 9,

where r(x) is a function satisfying

and the constants implied by O-symbols depend at most on .
Theorem 4. Under the same assumptions of Theorem 1, we have

1W(M/x), x)-- , +O((logx)-(log log log x)’-9,
(p-l)

where the constant implied by O-symbol depends only on .
In this paper we give a sketch o the proof of Theorem 1 only.
Let P be the set of all primes, d be a fixed positive integer, and

we define or integar i, ] or b"
P(x)={n n=p+i, p e P, nx}, i.e. a sequence o shifted primes,
I(x)=(n n is contained in lust ] sequences among P_(x), ...,

P_(x), Pi(x), ..., Pa(x)},
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Q(x) I(x) f P,
P(x) {p p e P, p+ b e P, p <_ x}.

Then we have
Lemma 1.

(n)= {log log x+A+ 1 -log 2+a,(x)). Li(x),
n,(x) p(p- 1)

where the function a(x) satisfies
,/
2 log x log x

and the constants implied by O-symbols are absolute.

where

Lemma 2.

q<x pPb(x)
qP p--a(q)

log2x

and the constant implied by O-symbol is absolute.
In order to prove Lemma 1, we have to utilize Bombieri’s theorem

([3]), Brun-Titchmarsh’s theorem ([5, Theorem 3.8]), and M. Goldfeld’s
result ([4]). Lemma 2 can be deduced rom the ollowing two esti-
mates ([5, Corollary 2.4.1] and [5, Theorem 3.11]):

ee() p 9(k) log(x/k)
p (rood k)

Now return to the proof of Theorem 1. It is easy to see that
d 2d 2d

(4) [N(x)l= [P,(x)l-Z (i-1)lI(x)]-
Iil =1 j=2 j=l

d 2d 2d

(5) w(n)= (n) (] l w(n)-[Q(x)].
nN4(x) [i[ =1 nPi(x) j=2 nIj(x) j=l

Concerning (4), we have obviously,
d

]P,(x)i=2d(=(x)+O(1)},

and from the definitions of I(x) and Q(x), we obtain by (2) and (3)
that

(]-l)I()=2d’d’De "0

[Q(x)=2d.D.O
j=l

Lemma I gives an estimate of the first term of (5)"

() 2g log log z+A+ log 2+ () Li(z).

Furthermore,
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2d 2d, (]-- 1) w(n) <24 , , w(n) =24 o(n),
j=2 nI(x) j=2 nI(x) b,e nPb(x)

where, denotes the sum over 11 such pairings of integers b and c
that satisfy -db<cd, b.c#O. Since

E (n)=E E +o(),
nPb(x) Pc(x) qx pPc-b(x)

qP p-b(q)

we obtain by Lemma 2 that

(-- 1) ()=2d. g. De. O log log ..
Consequently, rom (4)and (5), we obtain

( (1]N(x)]=2d 1+ d. D. 0
log x log x’

and

where

(

2dllog log x+A+ log 2+fl(x)
ne(x) p(p- 1)

+d.D.O(lglgx)} x
og. lox’

d1 E (x).(x) -h- ;Theorem I can be proved immediately.
The proofs o Theorems 2-4 are accomplished in a similar way

as the above, but or Theorems 3 and 4, besides (2) and (3), more
precise estimates are required; let g be a positive integer, b(lig)
be integers satisfying lbb.... bq2d, and Po,...,(x)=(p px,
p e P, p/b e P, i=1, 2, ..., g}, then we have

Ip0,...,(zl= D. O o-z
’,-..,( 1 p--1 log/(z/k)

whereD is as above and constants implied by O-symbols are absolute
(both o/ these two are deduced from [g, Theorem 2.4:]).

Our Theorem 1 gives only a range of values of (z). More pre-
cise estimate ot a(x) would be obtained if an asymptotic formula of
the following" form could be proved:

IS(x)lC(x),
where S(x)={p; 19 e P, p<.x, p+d has a prime actor greater than
/-}, and C is a constant depending only on d. We have a conjecture
that

Sd(x) (log 2)u(x),
which would imply

V(N, x)-V(N, x)N W(N, x).
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Remark. I should like to notice that the following asymptotic
formula is easy to prove"

T(x) ]-- (log 2)x,
where T(x) (n n< x, n-d has a prime factor greater than /}.

I am thankful to Prof. M. Tanaka, who gave me an advice on
an original version of this paper owing to which I could improve my
results.
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