110. Modular Representations of p-Groups with Regular Rings of Invariants

By Haruhisa Nakajima
Department of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1980)

§ 1. Introduction. Let V be an n-dimensional vector space over a field k of characteristic p and G a finite subgroup of $G L(V)$. Then G acts linearly on the symmetric algebra R of V. We denote by R^{G} the subring of R consisting of all invariant polynomials under this action of G. The following theorem is well known.
(1.1) Theorem (Chevalley-Serre, cf. [2], [3], [5]). Suppose that $p=0$ or $(|G|, p)=1$. Then R^{a} is a polynomial ring if and only if G is generated by pseudo-reflections in $G L(V)$ (an element σ of $G L(V)$ is said to be a pseudo-reflection if rank $(\sigma-1) \leqq 1)$.

Now we assume that $p>0$ and that the order of G is divisible by p. Serre obtained a necessary condition for R^{ϵ} to be a polynomial ring as follows.
(1.2) Theorem (Serre, cf. [2], [5]). If R^{a} is a polynomial ring, then G is generated by pseudo-reflections.

However the converse of (1.2) is not always true. For example $R^{o_{n}\left(\boldsymbol{F}_{q}\right)}$ ($n \geqq 4, p$ odd) are not polynomial rings, where $O_{n}\left(\boldsymbol{F}_{q}\right)$ are orthogonal subgroups of $G L(V)$ of dimension n defined over the subfield \boldsymbol{F}_{q} of k consisting of q elements.

Hereafter we suppose that k is the prime field of characteristic $p(>0)$ and that G is a p-subgroup of $G L(V)$.

The purpose of this note is to announce our results on rings of invariants of p-groups. We can completely determine p-groups G such that R^{G} are polynomial rings. The main result is
(1.3) Theorem. The following statements on a pair of V and G are equivalent:
(1) R^{G} is a polynomial ring.
(2) There is a k-basis $\left\{X_{1}, \cdots, X_{n}\right\}$ of V with the equality

$$
\prod_{i=1}^{n}\left|G X_{i}\right|=|G|
$$

such that all $\oplus_{i=1}^{j} k X_{i}(1 \leqq j \leqq n)$ are $k G$-submodules of V.
In [1] it has been shown that if G is a p-Sylow subgroup of $G L(V)$, R^{G} is a polynomial ring.
§2. Preliminaries. We need some lemmas on invariant subrings of polynomial rings:
(2.1) Lemma. Let N be a subgroup of $G L(V)$ and let H be the inertia group of a prime ideal \mathfrak{p} of R under the natural action of N. If R^{N} is a polynomial ring, then R^{H} is also a polynomial ring.

Proof. It suffices to treat the case where p is generated by $\mathfrak{p} \cap V$.
Then we easily see that

$$
\left[\bar{k}{\left.\underset{k}{ } R^{H}\right]_{\mathrm{m}_{1}} \cong\left[\bar{k} \otimes_{k} R^{H}\right]_{\mathrm{m}_{2}} .}\right.
$$

for any maximal ideals \mathfrak{m}_{i} of $\bar{k} \bigotimes_{k} R^{H}$ which contain \mathfrak{p}^{H}, where \bar{k} denotes the algebraic closure of k. On the other hand, since \mathfrak{p}^{H} is unramified over $\mathfrak{p} \cap R^{N}, R_{p H}^{H}$ is a regular local ring. This implies that $\bar{k} \otimes_{k} R^{H}$ is a polynomial ring. Hence R^{H} is also a polynomial ring.

For a subset A of a ring $S,\langle A\rangle_{S}$ denotes the ideal of S generated by A.
(2.2) Lemma. For a subgroup N of $G L(V)$ let W be a kN-submodule of V with $[V / W]^{N}=V / W$. Then $R^{N} /\left[\langle W\rangle_{R}\right]^{N}$ is a polynomial ring.

Proof. The additive group $\bar{k} \otimes_{k} V / W$ acts transitively on the set consisting of closed points in the support of the $\bar{k} \otimes_{k} R^{N}$-module $\bar{k} \otimes_{k} R^{N} /\left[\langle W\rangle_{R}\right]^{N}$. Therefore $R^{N} /\left[\langle W\rangle_{R}\right]^{N}$ is a polynomial ring.
(2.3) Lemma. Suppose that N and W are the same as in (2.2). Furthermore let W contain a kN-submodule \tilde{W} such that $\operatorname{dim} W / \tilde{W}=1$. Then $\left[R^{H} /\left[\langle\tilde{W}\rangle_{R}\right]^{H}\right]^{N / H}$ is a polynomial ring where H denotes the inertia group of $\langle\tilde{W}\rangle_{R}$ under the action of N.

This follows easily from (2.2).
(V, H), which is called a couple, stands for a pair of a group H and an H-faithful $k H$-module V such that V / V^{H} is a nonzero trivial $k H$-module (i.e., H acts trivially on the nonzero vector space V / V^{H}, and so H is an elementary abelian p-group). (U, L) is said to be a subcouple of (V, H) if L is a subgroup of H and U is a $k L$-submodule of V. Further we say that (V, H) decomposes to subcouples $\left(V_{i}, H_{i}\right)$ $(1 \leqq i \leqq m)$ if $H=\oplus_{i=1}^{m} H_{i}, V^{H} \leqq V_{i} \subseteq V^{H_{j}}$ for all $1 \leqq i, j \leqq m$ with $i \neq j$ and $V / V^{H}\left(=\sum_{i=1}^{m} V_{i} / V^{H}\right)=\bigoplus_{i=1}^{m} V_{i} / V^{H}$.
(2.4) Lemma. Suppose that a couple (V, H) decomposes to subcouples $\left(V_{i}, H_{i}\right)(1 \leqq i \leqq m)$. Then R^{H} is a polynomial ring if and only if $R_{i}^{H_{i}}(1 \leqq i \leqq m)$ are polynomial rings, where each R_{i} is the symmetric algebra of V_{i}.

Proof. The "if" part of (2.4) is obvious. So we assume that R^{H} is a polynomial ring. Then the ideal $\left[\left\langle V^{H}\right\rangle_{R}\right]^{H}$ of R^{H} is generated by V^{H}. From this we obtain

$$
\left[\left\langle V_{i}^{H_{i}}\right\rangle_{R_{i}}\right]^{H_{i}}=\left\langle V_{i}^{H_{i}}\right\rangle_{R_{i}^{H_{i}}} \quad(1 \leqq i \leqq m),
$$

since the canonical $k H_{i}$-epimorphism $V \rightarrow V_{i}$ induces a graded epimorphism $R^{H} \rightarrow R_{i}^{H_{i}}$. Hence, by (2.2), $R_{i}^{H_{i}}(1 \leqq i \leqq m)$ are polynomial rings.

A couple (V, H) is defined to be indecomposable if it does not decompose to subcouples (V_{i}, H_{i}) $(1 \leqq i \leqq m)$ with $m \geqq 2$.

The following theorem, which is a special case of (1.3), plays an essential role in § 3 .
(2.5) Theorem (cf. [4]). Let (V, H) be an indecomposable couple. Then R^{H} is a polynomial ring if and only if $\operatorname{dim} V / V^{H}=1$.

By (1.2), (2.4) and (2.5) we can classify abelian subgroups H of $G L(V)$ such that R^{H} are polynomial rings (cf. [4]).
(2.6) Lemma. Suppose that for a subgroup N of $G L(V) W$ is a $k N$-submodule of V. If R^{N} is a polynomial ring, then $R^{N} /\left[\langle W\rangle_{R}\right]^{N}$ is also a polynomial ring.

Using (2.2), we can easily prove this.
Now let $\left\{X_{1}, \cdots, X_{n}\right\}$ be a k-basis of V such that all $\oplus_{i=1}^{j} k X_{i}(1 \leqq j$ $\leqq n$) are $k G$-submodules of V. The condition (2) of (1.3) is characterized by
(2.7) Proposition. The following conditions are equivalent:
(1) $\prod_{i=1}^{n}\left|G X_{i}\right|=|G|$.
(2) There exist subgroups $G_{i}(1 \leqq i \leqq n)$ of G such that $G X_{i}=G_{i} X_{i}$ and $G_{i} X_{j}=\left\{X_{j}\right\}$ for all $1 \leqq i, j \leqq n$ with $i \neq j$. (In this case $G=G_{1} \ldots$ G_{n}.)
(3) There exist homogeneous polynomials $f_{i} \in k\left[X_{1}, \cdots, X_{i}\right](1 \leqq i$ $\leqq n$) such that $R^{G}=k\left[f_{1}, \cdots, f_{n}\right]$ and each f_{i} is divisible by X_{i} in R.

The implications (2) $\Rightarrow(1) \Rightarrow(3)$ are easy. The result (1.2) of Serre is used in the proof of (3) $\Rightarrow(2)$.

By (2.3) and the Galois descent, we obtain
(2.8) Proposition. The following conditions are equivalent:
(1) R^{G} is a polynomial ring.
(2) There exists an n-dimensional graded polynomial subalgebra $S=k\left[f_{1}, \cdots, f_{n}\right]$ of R^{G} with

$$
\prod_{i=1}^{n} \operatorname{deg} f_{i} \leqq|G|
$$

such that $S \cap \sum_{i=1}^{j} R X_{i}=\sum_{i=1}^{j} S f_{i}$ for all $1 \leqq j \leqq n$, where f_{i} are homogeneous polynomials.
§3. The main theorem. We adopt the following notation and terminology: Put $V_{0}=V$ and for any integer $j \geqq 1$ define $V^{j}=V_{j-1}^{G}$, $V_{j}=V_{j-1} / V^{j}$ respectively. As G is unipotent, $V_{j}=V^{j}=0$ for sufficiently large j. Let $\underline{X}=\left\{X_{i} \mid i \in I\right\}$ be a k-basis of V. The set \underline{X} is said to be a k-basis relative to G if, for each $j(\geqq 1)$ with $V^{j} \neq 0$, there is a subset of \underline{X} whose canonical image in V_{j-1} is a k-basis of V^{j}.

In this section we will give an outline of the proof of a stronger result than (1.3).
(3.1) Theorem. The following statements on a pair of V and G are equivalent:
(1) R^{c} is a polynomial ring.
(2) There is a k-basis $\left\{X_{i} \mid i \in I\right\}$ of V relative to G which satisfies the equality

$$
\prod_{i \in I}\left|G X_{i}\right|=|G| .
$$

It suffices to show the implication (1) $\Rightarrow(2)$ of this theorem. So we suppose that R^{G} is a polynomial ring and will prove the assertion (2) by induction on the order of G.

If $G=\{1\}$, there is nothing to prove. Thus we assume $G \neq\{1\}$. Let M be a subspace of V^{m-1} such that $\operatorname{dim} V^{m-1} / M=1$ where $m=\max \left\{j \mid V^{j} \neq 0\right\}$. Further let H be the inertia group of the prime ideal of R generated by $\varphi_{m-2}^{-1}(M)$ under the natural action of G. Here φ_{m-2} is the canonical epimorphism $V \rightarrow V_{m-2}$. Then we may assume that $|G|>|H|$. By (2.1) R^{H} is a polynomial ring. Hence, using the induction hypothesis, we have a k-basis $\left\{Y_{i} \mid i \in I\right\}$ of V relative to H which satisfies

$$
\prod_{i \in I}\left|H Y_{i}\right|=|H| .
$$

On the other hand, from (2.4), (2.5), (2.6) and (2.7), we get
(3.2) Proposition. If for a k-basis $\left\{Z_{\imath} \mid i \in I\right\}$ of V relative to G the equality

$$
\prod_{i \in I}\left|H Z_{\imath}\right|=|H|
$$

holds, then there exists another k-basis $\left\{Z_{i}^{\prime} \mid i \in I\right\}$ of V relative to G such that

$$
\prod_{i \in I}\left|G Z_{i}^{\prime}\right|=|G| .
$$

To prove our theorem we need only to construct a k-basis $\left\{Z_{i} \mid i \in I\right\}$ of V relative to G with

$$
\prod_{i \in I}\left|H Z_{\imath}\right|=|H| .
$$

Let us put

$$
J=\left\{i \in I| | H Y_{i}\left|<\left|H Y_{J(i)}\right| \text { for some } j(i) \in I\right\}\right.
$$

and set $U=\oplus_{i \in J} k Y_{i}$. Then U is a $k G$-submodule of V. By (2.8) we infer that A^{G} is a polynomial ring where A denotes the symmetric algebra of U. Let $\rho: G \rightarrow G L(U)$ be the representation of G associated with the $k G$-module U. As $|G / \operatorname{Ker} \rho|<|G|$, from the induction hypothesis we find a k-basis $\left\{Z_{\imath} \mid i \in J\right\}$ of U relative to $G / \operatorname{Ker} \rho$ with

$$
\prod_{i \in J}\left|G Z_{i}\right|=|G / \operatorname{Ker} \rho| .
$$

Clearly there are bases of V relative to G which contain $\left\{Z_{i} \mid i \in J\right\}$ respectively. Moreover, using (2.4) and (2.5), we can prove
(3.3) Lemma. There are elements $Z_{i}(i \in I \backslash J)$ with

$$
\prod_{i \in \Lambda J}\left|H Z_{i}\right|=|H \cap \operatorname{Ker} \rho|
$$

such that $\left\{Z_{i} \mid i \in I\right\}$ is a k-basis of V relative to G.
The set $\left\{Z_{i} \mid i \in I\right\}$ is a k-basis of V as desired. Thus the proof of
(3.1) is completed.

Detailed accounts will be published elsewhere.

References

[1] M.-J. Bertin: Sous-anneaux d'invariants d'anneaux de polynomes. C. R. Acad. Sci. Paris, 260, 5655-5658 (1965).
[2] N. Bourbaki: Groupes et algèbres de Lie. Chs. 4, 5 et 6, Herman, Paris (1968).
[3] C. Chevalley: Invariants of finite groups generated by reflections. Amer. J. Math., 67, 778-782 (1955).
[4] H. Nakajima: Modular representations of abelian groups with regular rings of invariants (to appear in Nagoya Math. J.).
[5] J.-P. Serre: Groupes finis d'automorphismes d'anneaux locaux réguliers. Colloq. d'Alg. E. N. S. (1967).

