105. An Extension of e^{∞} to $[-\infty, \infty]$

By Mitsuo MORIMOTO

Department of Mathematics, Sophia University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1980)

The sheaf \mathscr{R} of Fourier hyperfunction on $[-\infty, \infty]$ is known to be a flabby sheaf. The exponential function e^x can be considered as a Fourier hyperfunctions on $[-\infty, \infty)$. Therefore, e^x can be extended to a Fourier hyperfunction on $[-\infty, \infty]$. In this paper, we will construct a concrete extension of e^x to $[-\infty, \infty]$.

§1. Definitions. We put $D = [-\infty, \infty]$ and recall some definitions. $\tilde{\mathcal{O}}$ denotes the sheaf over $D + iR(i = \sqrt{-1})$ of slowly increasing holomorphic functions. For an open set Ω of D + iR, the section module $\tilde{\mathcal{O}}(\Omega)$ is the space of all holomorphic functions $f(z) \in \mathcal{O}(\Omega \cap C)$ such that for any $\varepsilon > 0$ and any compact set K in Ω , the estimate

 $\sup\{|f(z)|e^{-\epsilon|z|}; z \in K \cap C\} < \infty$

holds. For an open set ω of D, the space $\Re(\omega)$ of Fourier hyperfunctions on ω is defined to be

(1)
$$\Re(\omega) = \tilde{\mathcal{O}}(\Omega \setminus \omega) / \tilde{\mathcal{O}}(\Omega),$$

where Ω is a complex neighborhood of ω , i.e. Ω is an open set of D+iR, containing ω as a relatively closed subset. Let us remark that the right hand side of (1) is independent of the choice of complex neighborhoods Ω of ω . We mean by the flabbiness of the sheaf \mathcal{R} the surjectivity of the restriction mappings

for any open subsets ω_1 and ω_2 of **D** such that $\omega_1 \supset \omega_2$. For the details of the theory of Fourier hyperfunctions, we refer the reader to Sato [4] or Kawai [1].

The exponential function e^i belongs clearly to $\tilde{\mathcal{O}}([-\infty, \infty)+i\mathbf{R})$. We put

$$\exp_+(z) = egin{cases} e^z & ext{ for Im } z \! > \! 0 \ 0 & ext{ for Im } z \! < \! 0. \end{cases}$$

Then $\exp_+(z) \in \tilde{\mathcal{O}}([-\infty, \infty) + i(\mathbb{R} \setminus 0))$ and the class $[\exp_+(z)]$ of $\exp_+(z)$ mod $\tilde{\mathcal{O}}([-\infty, \infty) + i\mathbb{R})$ is, by definition, the Fourier hyperfunction e^x on $[-\infty, \infty)$.

§2. Fourier hyperfunction with support at $+\infty$. For M>0, we put

(3)
$$H_{M,\pi} = \{z = x + iy \in C; x \ge M, |2xy| \le \pi\}.$$

For $z \notin H_{M,\pi}$, we put

(4)
$$F(z) = \frac{1}{2\pi i} \int_{\partial H_{M,\pi}} \frac{\exp(-(z-w)^2)}{z-w} \exp(\exp w^2) dw$$

By Cauchy's integral theorem, the right hand side of (4) is independent of M>0 and (4) defines an entire function F(z) by analytic continuation.

For a>0 and $\varepsilon>0$, we denote $A=[a, \infty)$ and $A_{\epsilon}[a-\varepsilon, \infty)+i[-\varepsilon, \varepsilon]$. Proposition 1. For any R>0, a>0, $\varepsilon>0$ and r with 0< r<1, there exists $C \ge 0$ such that

(5) $|F(z)| \leq C \exp(-rx^2)$ for $z = x + iy \notin A_*$ and $|y| \leq R$. Proof. For $w = u + iv \in C$, we have

$$|\exp(\exp w^2)| = \exp(\operatorname{Re} \exp w^2) = \exp(\exp(u^2 - v^2)\cos 2uv) \\ \leq \exp(\exp(u^2 - v^2)) \leq \exp(\exp u^2).$$

If $|2uv| = \pi$ and $u \ge M > 0$, we have $|\exp(\exp w^2)| = \exp(-\exp(u^2 - v^2))$

$$= \exp\left(-\exp\left(u^2 - \left(\frac{\pi}{2u}\right)^2\right)\right) \leqslant \exp(-M' \exp u^2),$$

where $M' = \exp(-(\pi/2M)^2) > 0$. Remark also $|\exp(-(z-w)^2)| = \exp(-(x-u)^2 + (y-v)^2).$

Let us fix M>0 so large that $A_* \supset A_{*/2} \supset H_{M,\pi}$. If $z=x+iy \notin A_*$ and $|y| \leq R$, we have by (4)

(6)
$$|F(z)| \leq \frac{1}{2\pi} \int_{-\pi/2M}^{\pi/2M} C_0 \exp(-(x-M)^2 + \exp(M^2)) dv + \frac{1}{\pi} \int_{-\pi/2M}^{\infty} C_0 \exp(-(x-u)^2 - M' \exp(u^2)) du,$$

where $C_0 = 2/\varepsilon \exp((R+\varepsilon)^2)$. Therefore, if we choose $C_1 \ge 0$ sufficiently large, the first term of the right hand of (6) can be majorized by $C_1 \exp(-rx^2)$. As for the second term, we can choose $C'_2 \ge 0$ such that

The second term of the right hand of (6)

$$\leq C_{2}^{\prime} \int_{M}^{\infty} \exp(-(x-u)^{2} - M^{\prime} \exp(u^{2})) du$$

$$\leq C_{2}^{\prime} \int_{M}^{\infty} \exp\left(-\left(\frac{x}{\sqrt{1+B}} - \sqrt{1+B}u\right)^{2} - \frac{B}{1+B}x^{2}\right) \exp(Bu^{2} - M^{\prime} \exp(u^{2})) du$$

$$\leq C_{2}^{\prime} \exp\left(-\frac{B}{1+B}x^{2}\right) \int_{M}^{\infty} \exp(Bu^{2} - M^{\prime} \exp(u^{2})) du$$

$$= C_{2}^{\prime \prime} \exp\left(-\frac{B}{1+B}x^{2}\right),$$

where B>0 is an arbitrary positive number. Therefore, if we choose $C_2>0$ sufficiently large, the second term of the right hand of (6) can be majorized by $C_2 \exp(-rx^2)$. Q.E.D.

By Proposition 1, the function F(z) belongs to $\tilde{\mathcal{O}}((D+iR)\setminus(+\infty +i0))$. The Fourier hyperfunction T=[F], the class, of $F \mod \tilde{\mathcal{O}}(D+iR)$, has its support only at $\{+\infty\}$. It is proved in Morimoto-Yoshino [3] that T is not identically zero.

No. 10]

M. Morimoto

Remark. The function F(z) never satisfies the estimate of the following type on A_i :

(7) $|F(z)| \leq C \exp(B e^{\alpha |z|})$ for some B > 0, $\alpha > 0$ and $C \geq 0$. If we have (7) for $z \in A_{\epsilon}$, then F must belong to $\tilde{\mathcal{O}}(D+iR)$ by the Phragmén-Lindelöf theorem and the Fourier hyperfunction T = [F] must vanish identically. But this is not the case.

§ 3. Fourier transformations of T. Define the Fourier transformation of the Fourier hyperfunction T as follows:

$$\tilde{T}(\zeta) = \int_{\partial A_{\varepsilon}} e^{\zeta z} F(z) \, dz,$$

the integral being independent of a>0 and $\varepsilon>0$. $\tilde{T}(\zeta)$ is a non-zero entire function of exponential type in the following sense: For any $a_0 \ge 0$, a>0 and $\varepsilon>0$, there exists $C \ge 0$ such that

 $|\tilde{T}(\zeta)| \leq C \exp((-a+\varepsilon)|\operatorname{Re} \zeta|+\varepsilon|\operatorname{Im} \zeta|)$

for every $\zeta \in C$ with $\operatorname{Re} \zeta \leqslant a_0$. (See, for example, Morimoto [2].) Restating Proposition 1, we get the following

Proposition 2. Fix $\lambda > 0$ such that $\tilde{T}(-\lambda) \neq 0$ and put $F_{\lambda}(z) = F(z/\lambda)/(\lambda \tilde{T}(-\lambda))$. Then F_{λ} is an entire function and for any R > 0, a > 0, $\varepsilon > 0$ and r with $0 < r < \lambda^{-2}$, there exists $C \ge 0$ such that

 $|F_{\lambda}(z)| \leq C \exp(-rx^2)$ for $z = x + iy \notin A$, and $|y| \leq R$. If we denote by $T_{\lambda} = [F_{\lambda}]$ the Fourier hyperfunction defined by F_{λ} , we have supp $T_{\lambda} = \{+\infty\}$.

§4. A differential equation. Let us consider the differential equation

$$(8) f'(z) - f(z) = F_{\lambda}(z)$$

in the complex plane C. It is clear that a special solution f_+ is given as follows:

$$f_{+}(z) = e^{z} \int_{+\infty+iy}^{x+iy} e^{-w} F_{\lambda}(w) \, dw$$

for y = Im z > 0, where the integral path is a half straight line parallel to the *x*-axis. Similarly we define

$$f_{-}(z) = e^{z} \int_{+\infty+iy}^{x+iy} e^{-w} F_{\lambda}(w) dw$$

for y = Im z < 0.

Proposition 3. (i) The functions f_+ and f_- can be extended to entire functions and satisfy the differential equation (8).

(ii) For any R>0, $\varepsilon > 0$ and $r (0 < r < \lambda^{-2})$, there exists $C \ge 0$ such that

(9)	$ f_+(z) \leqslant C \exp(-rx^2)$	for $\varepsilon \leqslant \text{Im } z \leqslant R$, $x = \text{Re } z \geqslant 0$,
	$ f_+(z) \leqslant C \exp(- x)$	for $\varepsilon \leqslant \operatorname{Im} z \leqslant R$, $x = \operatorname{Re} z < 0$;
(9')	$ f_{-}(z) \leqslant C \exp(-rx^2)$	for $-\varepsilon \ge \operatorname{Im} z \ge -R$, $x = \operatorname{Re} z \ge 0$,
	$ f_{-}(z) \leqslant C \exp(- x)$	for $-\varepsilon \ge \operatorname{Im} z \ge -R$, $x = \operatorname{Re} z < 0$.

No. 10]

An Extension of e^x to $[-\infty, \infty]$

(iii)
$$f_+(z) - f_-(z) = e^z \qquad for \ z \in C.$$

Proof. (i) As the function $e^{-w}F_{\lambda}(w)$ is an entire function, we can extend f_{+} and f_{-} to the whole plane by analytic continuation.

(ii) Let us prove the estimate for f_+ . Suppose z=x+iy and Im z>0. We can rewrite the definition formula of f_+ as follows:

$$f_{+}(z) = e^{z} \int_{+\infty}^{x} e^{-(u+iy)} F_{\lambda}(u+iy) du.$$

By Proposition 2, if we choose r' with $0 < r < r' < \lambda^{-2}$, we have

$$|f_+(z)| \leqslant e^x \left| \int_{+\infty}^x e^{-u} C \exp(-r'u^2) du \right| \leqslant C e^x \int_x^\infty \exp(-r'u^2 - u) du.$$

If $x \ge 0$, we have

$$|f_{+}(z)| \leq C \exp(x - r'x^{2}) \int_{0}^{\infty} e^{-u} du = C \exp(x - r'x^{2}) \leq C' \exp(-rx^{2}).$$

If x < 0, we have

$$|f_{+}(z)| \leqslant C e^{x} \int_{x}^{\infty} \exp(-r'u^{2}-u) du \leqslant C'e^{x},$$

where C' is a constant.

(iii) By Cauchy's integral theorem, we have

$$f_{+}(z) - f_{-}(z) = e^{z} \int_{\partial A_{\varepsilon}} e^{-w} F_{\lambda}(w) dw$$

= $\frac{e^{z}}{\widetilde{T}(-\lambda)} \int_{\partial A_{\varepsilon}} e^{-w} F(w/\lambda) \frac{dw}{\lambda}$
= $\frac{e^{z}}{\widetilde{T}(-\lambda)} \int_{\partial A_{\varepsilon}(\lambda)} e^{-\lambda w} F(w) dw = e^{z},$

where we put $A_{\varepsilon}(\lambda) = [a - \varepsilon/\lambda, \infty) + i[-\varepsilon/\lambda, \varepsilon/\lambda].$

Q.E.D.

Define the function $f_0(z) \in \tilde{\mathcal{O}}(D + i(R \setminus 0))$ as follows:

$$f_0(z) = egin{cases} f_+(z) & ext{ for Im } z > 0 \ f_-(z) & ext{ for Im } z < 0. \end{cases}$$

Define the Fourier hyperfunction $E_{\lambda} = [f_0]$ on D as the class of $f_0 \mod \tilde{\mathcal{O}}(D+iR)$. Then by Proposition 3, (iii), the Fourier hyperfunction E_{λ} is an extension of the Fourier hyperfunction e^x on $[-\infty, \infty)$. Remark also the Fourier hyperfunction E_{λ} satisfies the following differential equation:

$$\frac{d}{dx}E_{\lambda}-E_{\lambda}=T_{\lambda},$$

where T_{λ} is defined in §3 and satisfies supp $T_{\lambda} = \{+\infty\}$.

References

- Kawai, T.: On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients. J. Fac. Sci. Univ. Tokyo, Sec. IA, 17, 467-517 (1970).
- [2] Morimoto, M.: Analytic functionals with non compact carrier. Tokyo J. Math., 1, 77-103 (1978).

453

М. Могімото

- [3] Morimoto, M., and Yoshino, K.: Some examples of analytic functionals with carrier at the infinity. Proc. Japan Acad., 56A, 357-361 (1980).
- [4] Sato, M.: The theory of hyperfunctions. Sûgaku, 10, 1-27 (1958) (in Japanese).