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105. An Extension of e® to [—oo, 0]

By Mitsuo MORIMOTO
Department of Mathematics, Sophia University

(Communicated by Kosaku YosipA, M. J. A., Dec. 12, 1980)

The sheaf R of Fourier hyperfunction on [— oo, oo] is known to
be a flabby sheaf. The exponential function ¢® can be considered as
a Fourier hyperfunctions on [— oo, o). Therefore, e” can be extended
to a Fourier hyperfunction on [— oo, oo]. In this paper, we will con-
struct a concrete extension of ¢” to [— o0, oo].

§ 1. Definitions. We put D=[—c0, oo] and recall some defini-
tions. (O denotes the sheaf over D+iR(i=+/—1) of slowly increasing
holomorphic functions. For an open set 2 of D+iR, the section
module §() is the space of all holomorphic functions f(z) € (2N C)
such that for any ¢>0 and any compact set K in 2, the estimate

sup{|f(®)|e *'"; ze KNC}< o0
holds. For an open set w of D, the space R(w) of Fourier hyperfunc-
tions on w is defined to be

(1) R(w)=0(2\w)/ (D),
where 2 is a complex neighborhood of w, i.e. £ is an open set of
D+1iR, containing w as a relatively closed subset. Let us remark that
the right hand side of (1) is independent of the choice of complex
neighborhoods 2 of . We mean by the flabbiness of the sheaf R the
surjectivity of the restriction mappings
( 2) 91(«)1) g gz(wz):
for any open subsets w, and w, of D such that w,Dw,. For the details
of the theory of Fourier hyperfunctions, we refer the reader to Sato
[4] or Kawai [1].

The exponential function e’ belongs clearly to O([— oo, o0)+iR).
‘We put
e’ for Im z2>0
0 for Im z<0.
Then exp, (2) € &([— oo, o0)+4(R\0)) and the class [exp,(2)] of exp.(?)
mod O([— oo, c0)+iR) is, by definition, the Fourier hyperfunction e®
on [— oo, oo).

exp. (2) ={

§2. Fourier hyperfunction with support at +oo. For M >0,
we put
(3) Hy . ={z=x+iyeC; a=M, |2zy|<n}.
For z¢ H, ., we put
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(4)  Fe=f expe-w)
2nt J ol x 2—w

By Cauchy’s integral theorem, the right hand side of (4) is indepen-
dent of M >0 and (4) defines an entire function F(z) by analytic
continuation.

For a>0 and ¢>0, we denote A =[a, o) and A.[a —e, c0)+i[—¢, €].

Proposition 1. For any R>0, a>0, ¢>0 and r with 0<r<1,
there exists C>0 such that
(5) |F(2)|<C exp(—7x?) for z=z+iye A, and |y|<R.

Proof. For w=u+1iv e C, we have

|exp(exp w?)|=exp(Re exp w?) =exp(exp(u?—v?)cos 2uv)
<exp(exp(w’—v*) <exp(exp u’).

If |2uv|== and u>M >0, we have

|exp(exp w?)|=exp(—exp(u’ —v7))

= exp(—exp(uz—— <E7:;)2)) <exp(— M’exp ub),
where M’'=exp(—(z/2M)*)>0. Remark also
|exp(— (2 —w)?) |=exp(— (x —u)*+ (¥ —v)?).

Let us fix M>0 so large that A,DA,,DH, ., If z=x+iyeA, and
|y|< R, we have by (4)

(6) |F(z)|<-1—f”’”' Cy exp(— (@ — M)y + exp(M)dv
o J —rr2m

exp(exp wi)dw.

+ 1 r C, exp(— (x—u)*— M’ exp(u))du,
TJM

where C,=2/¢ exp((R+¢)*). Therefore, if we choose C,>0 sufficiently

large, the first term of the right hand of (6) can be majorized by

C,exp(—7rx?). As for the second term, we can choose C;>0 such that
The second term of the right hand of (6)

<c;j: exp(— (@ —u)'— M’ exp(ud)du
- @ S— B
<C} —_ —— 2__ 2 2 2__ M/ 2
\CZJMeXp( ( i «/1+Bu) Fee )exp(Bu Mexp@d)du
xz)r exp(But— M’ exp(u?))du
M

<G eXp(_ 1f B
=C;'exp(—— lfB wz),
where B >0 is an arbitrary positive number. Therefore, if we choose
C,>0 sufficiently large, the second term of the right hand of (6) can
be majorized by C,exp(—rx?). Q.E.D.
By Proposition 1, the function F(z) belongs to &((D+iR)\(+ oo
+40)). The Fourier hyperfunction T=[F], the class, of F' mod
O(D+iR), has its support only at {+oo}. It is proved in Morimoto-
Yoshino [3] that T is not identically zero.
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Remark. The function F'(z) never satisfies the estimate of the
following type on A,:
(7) |F(2)|<C exp(B e*'?) for some B>0, «>0 and C>0.
If we have (7) for ze A,, then F must belong to @(D+iR) by the
Phragmén-Lindel6f theorem and the Fourier hyperfunction 7'=[F]
must vanish identically. But this is not the case.

§ 3. Fourier transformations of 7. Define the Fourier trans-
formation of the Fourier hyperfunction T' as follows:

T(@:LA &F(2) dz,

the integral being independent of ¢>0 and ¢>0. T(C) is a non-zero
entire function of exponential type in the following sense: For any
,>>0, a>0 and ¢>0, there exists C>0 such that
1T(©)|<C exp((—a+¢)|Re | +eIm )

for every { e C with Re{<a,. (See, for example, Morimoto [2].)

Restating Proposition 1, we get the following

Proposition 2. Fiz 1>0 such that T(—)=0 and put F(z)
=F(z/3)/ AT(—2). Then F,is an entire function and for any R>0,
>0, ¢>0 and r with 0<r<27?, there exists C>=0 such that

|F,(2)|< C exp(—ra?) for z=x+1y ¢ A, and |y|<R.

If we denote by T,=[F,] the Fourier hyperfunction defined by F,, we
have supp T,={+ oo}.

§4. A differential equation. Let us consider the differential
equation
(8) J'@)—fR)=F(2)
in the complex plane C. It is clear that a special solution f, is given
as follows:

%+ 1

f+(z)=e’f e F (w) dw

+ oo+ 1Y

for y=Im z>0, where the integral path is a half straight line parallel
to the z-axis. Similarly we define

%+ 1

f-(®= e’J ! e F (w)dw

400 +1iy
for y=Im 2<0.
Proposition 3. (i) The functions f, and f_ can be extended to
entire functions and satisfy the differential equation (8).
(i) For any R>0, >0 and r (0<r<27?), there exists C>=0 such
that
(9) |f.@®@|<Cexp(—rx?) for e<Im z<R, t=Re 20,
If.@|<Cexp(—|z] for e<Im z<R, x=Re 2<0;
(9) |f-(®|<Cexp(—rx?) for —e=Imz>—R, x=Re 2>0,
If-@)|<Cexp(—|x] for —e>Im 2> —R, x=Re 2<0.
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(iii) f.@—f_-()=¢* for zeC.

Proof. (i) As the function e *F (w) is an entire function, we
can extend f, and f_ to the whole plane by analytic continuation.

(ii) Let us prove the estimate for f,. Suppose z=x-iy and Im
2>0. We can rewrite the definition formula of f, as follows:

f.(= ezr e~ W OR (ut-1y) du.
By Proposition 2, if we choos:r’ with 0<r<7’ <2°%, we have
If.@|<e” r e C’exp(——r’uz)dui <C e’”rexp(—fr’uz—u)du.
If >0, we have - ’
@< C exp(x —7”x2)re'” du=C exp(x—r'x) <C" exp(—rx?).
If <0, we have 0
| f.®|<C e”J:exp(—r’uz—u)du< Ce?,

where C’ is a constant.
(iii) By Cauchy’s integral theorem, we have

o @D—F()=e j e F(w) dw

24

= [ evFuwn
T(—2 LA,e /D=

& J e~ (w) dw = ¢,
T(—2) Joew

where we put A, =[a—e/2, o) +i[—e/2, ¢/al. Q.E.D.
Define the function fy(z) € O(D+i(R\0)) as follows:
7. for Im 2>0
f°(z)={f_(z) for Im z<0.

Define the Fourier hyperfunction E,=[f,] on D as the class of f, mod
O(D+1iR). Then by Proposition 3, (iii), the Fourier hyperfunction E,
is an extension of the Fourier hyperfunction e¢* on [—oo, o). Re-
mark also the Fourier hyperfunction E, satisfies the following differ-
ential equation :

d

—d‘a;Ez—Ez= Tu

where T, is defined in §3 and satisfies supp T,={+ co}.
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