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1o The purpose of the present note is to show briefly an alter-
native proof of Iwaniec’s remarkable improvement [2] upon the linear
sieve of Rosser. Our argument is not much different from Iwaniec’s,
but, being a straightforward refinement of [3], it is comparatively
more direct and easy. Roughly speaking, our procedure is an injec-
tion of a smoothing device to Rosser’s infinite iteration of the
Buchstab identity.

We retain most of the notations of [3], and in addition we introduce
the condition 9" For any 3_<uv

Y, 3(p)p---O((log log u)-l).
uKp<v

Then the linear sieve o Iwaniec is, in a modified form,
Theorem. Provided MNz, 2, 22(1, L), Lg(log z)/(log log z),

we have, for ,=0 and 1,

(--1)-{S(A z)- (( log MN ,)+ O((log log z)-/))XV(z)}log z
_log z Max aflR,

a, m<M
n<N

where {am}, {fix} are variable vectors such that
Detailed discussions will be given in [5], and here we indicate only the
clues. Note that we have obtained a hybrid of this result (but ,=1
only) with the multiplicative large sieve (see [4]).
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his friend Dr. H. Iwaniec for sending him a preprint of the monu-
mental work [2].

2. To state our principal lemmas we introduce the following con-
ventions" We put z=zz2, where J is a large integer to be specified
later. We dissect [z,z) into J smaller intervals [zz-,zz), and de-
note one of them generally by I with or without suffix. K with or
without suffix stands for the set-theoretic direct product of a sequence
of I’s, and w(K) be the number of constituent I’s. If K=II2...Ir then
I<K means that (I) <min (I) (]g r), where (I) is the right end point
of I also d e K implies that d=pp...p with p e I, p e P. Note
that we do not reject non-squarefree d. Next we define
(,=0, 1) to be the characteristic functions of the sets of K such that
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{K 1112. Ir 11 >12) >I,,

and
{K=IlI2. .Ir]I1>I2>

(I1)(I2) (L. +_1)(I2 +)3<y
(l_2k+,_r)}

r--,(mod 2), (LI...L_,)=I,
(I)(I2) (I_ 1)(Ir)3

___
y}

respectively. Then generalizing the Rosser truncation of the iteration
o the Buchstab identity we get easily

Lemma 1.

S(A, z)= , (- 1)()(K) , S(A, zl)
K dK

+ F, (-)()(g) S(A,, ’)
I,K pp
IK p’,pI

dK

+ (-- 1) F(K) S(A, p(d)).
K dK

Corollary.
(-- 1)S(A, z) (-- 1) (-- 1)()(K) S(A, z)

K dK

(KI) S(A,, z).
I ,K p,p I
IK dK

(K) + (rood 2)

Remark. Note that the condition p’p has been dropped out.
With a little effort we can prove the ollowing modification of
Lemma 1 of [3]"

Lemma 2. Provided (1, L), zym(+), we have, for ,=0, 1,

V(z) V(z) (-1)()(g) --,+( log z
+ o{,(z) (o z) oz//"Next we state in a slightly more precise orm the crucial observation

o Iwaniec [2, Lemma 3]"
Lemma . Let y=MNz. Then ,(K)=I implies that there

exists a decomposition K=KK such that (K)M, (K)N. Also if
(KI) 1, IK and (K)--,+ 1 (mod 2), then, since (K)=I, we have
a decomposition K=KK as above, and at least one of the following
three cases occurs" {(K,)(I) <M, (K)(I) <N} {(K)(I)<M, (K) <N},
{(K)M, (K)(I)N}. Here e.g. (K) is the product of (I)’s of I’s ap-
pearing in K.. Now we indicate the main steps of our proof of the theorem.
Set z, z, z z’ with (log log z)-/0 thus Jg (log log z)/. Also
we assume L(log z)/(log log z). By the undamental lemma (see [1,
Lemma 5] or its quick proof) we see that there are two sequences
{h)} (,=0, 1) such that h)=O or rP(z), and ]h)l, and such that
uniformly or dP(z)

(-- 1){S(Aa z,)-(dxv(z)(I+ O(e-’))}d
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>__(--1) , h)R,

where H is a our disposal. We se H=e-, nd pply hese inequali-
ties to he righ side o he corollary o Lemma 1 above. We estimate
he resulting main erm by appealing to he condition 0 and o Lem-
ma 2 above as well s Lemm 2 of [3] (bu wih more accurate
O(L(log z)(log z) -z) in he place o 0(L(log y)-/)). Then he argumen
of [3] can be carried into our new situation wihou lernaion, exee9
for the choice o B appearing there; here we set 3=e-. In this way
we get the main term of the theorem. As for the error term we see
readily that its absolute value is less than the expression

(K) h+(K))Rg+ u(KI) .(1)
r Vdrpp

K dK
v(z I<K p ,p I

(K) +l(mod 2)

in which h =h if ]--,(mod 2). Then Lemma 3 gives the desired de-
compositions of d or dpp’ in these sums. Finally noticing that the
number o permissible K is less than 2log z we conclude the proof
of the theorem.
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