79. Classification of a Family of Abelian Varieties Parametrized by Reduction modulo \Re^{β} of a Shimura Curve

By Yasuo Morita
Department of Mathematics, Faculty of Science, Hokkaido University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1980)

Deuring classified elliptic curve defined over $\overline{\boldsymbol{F}}_{p}$ in [2]. In this paper, we obtain similar results for a certain family of abelian varieties parametrized by reduction modulo \mathfrak{B} of a Shimura curve. The results may be regarded as a generalization of an unpublished paper of Shimura in which he obtained similar results for the canonical family of abelian varieties parametrized by reduction modulo $\Re \gg$ of the Shimura curve for the unit group of a maximal order of an indefinite quaternion algebra over \boldsymbol{Q}.
§ 1. Notation and assumptions. Let the notation be as in Shimura [9] (and [10]), and let $\Omega_{0}=\left(L, \Phi, \rho ; F^{+} \cdot T, \mathfrak{M}\right)$ be the weak PEL-type which Shimura constructed in 7.13 of [9] (we assume that Ω_{0} has no level structure). Let p be a prime number, and let $p=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}$ be the factorization of p in \mathfrak{r}_{F}. Let $\mathfrak{p}=\mathfrak{p}_{1}$, and let \mathfrak{P} be an extension of \mathfrak{p} to a place of C. We assume that (i) \mathfrak{p} does not divide the discriminant $D(B / F)$ of B; (ii) each $\mathfrak{p}_{i}(i=1, \cdots, t)$ is decomposed in K / F as \mathfrak{p}_{i} $=\mathfrak{P}_{i} \overline{\mathfrak{P}}_{i}$; (iii) $\tau_{1}=\mathrm{id}$. and none of the $\overline{\mathfrak{P}}_{i}^{\tau_{\nu}}(i=1, \cdots, t, \nu=1, \cdots, g)$ is contained in \mathfrak{P}. We note that there exist infinitely many such extensions ($K, \tau_{1}, \cdots, \tau_{q}$) for each given ($F, \tau_{0,1}=\mathrm{id} ., \cdots, \tau_{0, q}$).
$\S 2$. Representations of r_{K} on tangent spaces. Let $\mathscr{R}=(A, \mathscr{D}, \theta)$ be a weak PEL-structure of type Ω_{0}. If \mathscr{R} has good reduction at \mathfrak{P}, then let $\widetilde{R}=(\tilde{A}, \widetilde{\mathscr{J}}, \tilde{\theta})$ be \mathcal{R} modulo \mathfrak{P} (cf. Morita [7]). Then we have a representation Σ of the ring $\mathrm{r}_{K} / p \mathrm{r}_{K}$ on the tangent space at the origin of \tilde{A}. Since this representation is obtained by taking reduction modulo \mathfrak{B} of the representation of \mathfrak{r}_{K} at the origin of A, and since \mathbb{R} is of type Ω_{0}, we can determine Σ. The result is the following: For each \Re_{i}, let f_{i} and π_{i} be the residue degree of \mathfrak{p}_{i} and a prime element of $\mathfrak{\Re}_{i}$, and let $\tau(i)$ be an element of $\left\{\tau_{1}, \cdots, \tau_{q}\right\}$ satisfying $\mathfrak{P}_{i}^{\tau(i)} \subseteq \mathfrak{P}$. We assume $\tau(1)=\tau_{1}$. Since $\mathfrak{o}_{p} \cong M_{2}\left(\mathfrak{r}_{F_{p}}\right)$, and since elements of \mathfrak{o} and elements of r_{K} commute, Σ is the direct sum of two copies of a representation Σ^{\prime} of \mathfrak{r}_{K}. Let α be an element of \mathfrak{r}_{K}. Then the set of eigen values of $\Sigma^{\prime}(\alpha)$ is $\left\{\alpha \bmod \mathfrak{\beta}\left(2 e_{1}-1\right.\right.$ times), $\bar{\alpha} \bmod \mathfrak{\beta}$ (once), $\alpha^{p_{\tau}(i)} \bmod \mathfrak{\beta}(1 \leq i \leq t$, $0 \leq j \leq f_{i}-1,(i, j) \neq(1,1), 2 e_{i}$ times $\left.)\right\}$. Accordingly, we can decompose
Σ^{\prime} into the direct sum of the subrepresentations $\Sigma_{11}^{\prime}, \bar{\Sigma}_{11}^{\prime}, \Sigma_{i j}^{\prime}((i, j) \neq(1,1))$ ． Then $\Sigma_{11}^{\prime}\left(\pi_{1}\right)$ and $\Sigma_{i j}^{\prime}\left(\pi_{i}\right)$ are represented by

$$
\left[\begin{array}{lllll}
0 & 1 & & \\
& \cdot & \ddots & \\
& \cdot & \cdot & \\
& & & 1 \\
& & & 0
\end{array}\right] \oplus\left[\begin{array}{lllll}
0 & 1 & & \\
& & \ddots & & \\
& & \cdot & \\
& & & 1 \\
& & & 0
\end{array}\right] \in M_{e_{1-1}}\left(\boldsymbol{F}_{p}\right) \oplus M_{e_{1}}\left(\boldsymbol{F}_{p}\right)
$$

and

$$
\left[\begin{array}{lllll}
0 & 1 & & \\
& \cdot & \ddots & \\
& & \cdot & \ddots & \\
& & \cdot & 1 \\
& & & 0
\end{array}\right] \oplus\left(\begin{array}{lllll}
0 & 1 & & \\
& \cdot & \ddots & \\
& & \cdot & & \\
& & & 1 \\
& & & 0
\end{array}\right] \in M_{e_{i}}\left(\boldsymbol{F}_{p}\right) \oplus M_{e_{i}}\left(\boldsymbol{F}_{p}\right)
$$

§3．The Frobenius element．Now we assume that $\widetilde{\mathscr{R}}$ is defined over a finite field \boldsymbol{F}_{q} ．Let π be the q－th power endomorphism of \tilde{A} ． We say $\widetilde{\mathcal{R}}$ is super－singular if some power of π belongs to $\tilde{\theta}\left(\mathrm{r}_{K}\right)$ ． Otherwise we say $\widetilde{\mathcal{R}}$ is singular．Let $G_{n, m}$ be as in Manin［6］．Then we have the following

Theorem 1．If $\widetilde{\Omega}$ is super－singular，
（i）End $(\tilde{A}, \tilde{\theta}) \otimes_{Z} \boldsymbol{Q}$ is isomorphic to the tensor product over F of K and the totally definite quaternion algebra D over F with discrimi－ nant $\mathfrak{p} D(B / F)$ ．
（ii）If $q=p^{2 a f_{1}}$ is sufficiently large，then

$$
\left(\tilde{\theta}^{-1}(\pi)\right)=\mathfrak{B}_{1}^{\left(2 e_{1} f_{1}-1\right) a} \bar{B}_{1}^{a} \Re_{2}^{2 e_{2} a f_{1}} \ldots \mathfrak{R}_{t}^{2 e_{t} a f_{1}} .
$$

（iii）Let $T_{p}(\tilde{A})=\oplus_{i=1}^{t}\left(T_{\mathfrak{P}_{i}}(\tilde{A}) \oplus T_{\overline{\mathcal{P}}_{i}}(\tilde{A})\right)$ be the decomposition of the p－divisible group $T_{p}(\tilde{A})$ of \tilde{A} by the action of \mathfrak{r}_{K} ．Then（a）the $T_{\Re_{i}}(\tilde{A})$ （ $i \geq 2$ ）are multiplicative，（b）the $T_{\bar{刃}_{i}}(\tilde{A})(i \geq 2)$ are etale，and（c）$T_{\mathfrak{B}_{i}}(\tilde{A})$ $\cong 2 G_{2 e_{1} f_{1}-1,1}$ and $T_{\Re_{i}}(\tilde{A}) \cong 2 G_{1,2 e_{1} f_{1}-1}$ ．

Theorem 2．If $\widetilde{\mathscr{R}}$ is singular，
（i）End $(\tilde{A}, \tilde{\theta}) \otimes_{Z} \boldsymbol{Q}$ is isomorphic to the tensor product over F of K and another totally imaginary quadratic extension M of F such that （a）$B \otimes_{F} M \cong M_{2}(M)$ and（b） \mathfrak{p} is decomposed in M / F ．
（ii）Let $\mathfrak{p}=\mathfrak{Q}^{\prime} \mathfrak{Q}^{\prime \prime} \mathfrak{D}^{\prime} \mathfrak{D}^{\prime}\left(\mathfrak{R}_{1} \subseteq \mathfrak{Q}^{\prime}, \mathfrak{R}_{1} \subseteq \mathfrak{Q}^{\prime \prime}, \mathfrak{Q}^{\prime} \subseteq \mathfrak{B}\right)$ be the decompo－ sition of \mathfrak{p} in $K \otimes_{F} M$ ．If $q=p^{a f_{1}}$ is sufficiently large，then there exist elements λ and μ of M and K such that $\tilde{\theta}^{-1}(\pi)=\lambda \mu,(\lambda)=\left(\mathfrak{D}^{\prime} \mathfrak{Q}^{\prime \prime}\right)^{a}$ and $(\mu)=\mathfrak{B}_{1}^{\left(e_{1} f_{1}-1\right) a} \mathfrak{B}_{2}^{e_{2} f_{1} a} \cdots \mathfrak{B}_{t}^{e_{t} f_{1} a}$ ．
（iii）Let $T_{p}(\tilde{A}) \cong \oplus_{i=1}^{t}\left(T_{\mathfrak{P}_{i}}(\tilde{A}) \oplus T_{\overline{\mathcal{P}}_{i}}(\tilde{A})\right)$ be the decomposition of the p－divisible group $T_{p}(\tilde{A})$ of \tilde{A} by the action of \mathfrak{r}_{K} ．Then（a）the $T_{\mathfrak{r}_{i}}(\tilde{A})$ （ $i \geq 2$ ）are multiplicative，（b）the $T_{\overline{刃 i}_{i}}(\tilde{A})(i \geq 2)$ are etale，and（c）$T_{\mathfrak{R}_{i}}(\tilde{A})$ $\cong 2\left(G_{e_{1} f_{1}-1,1} \oplus e_{1} f_{1} G_{1,0}\right)$ and $T_{\bar{刃}_{i}}(\tilde{A}) \cong 2\left(G_{1, e_{1} f_{1}-1} \oplus e_{1} f_{1} G_{0,1}\right)$ ．
§4．Classification．Let $\Omega_{0}=\left(L, \Phi, \rho ; F^{+} T, \mathfrak{M}\right)$ be as in § 1．Then $G^{+}(T)=\left\{\alpha \in L \mid T(x \alpha, y \alpha)=\mu(\alpha) T(x, y)\right.$ for some $\left.\mu(\alpha) \in F^{+}\right\}=K^{\times} B^{+}$．Let \boldsymbol{X} and \boldsymbol{Y} be sets of representatives of $\left\{x \in B_{A}^{\times} \mid \mathfrak{0} x=\mathfrak{0}\right\} \backslash B_{A}^{\times} / B^{+}$and $\left\{x \in K_{A}^{\times} \mid \mathfrak{r}_{K} x=\mathfrak{r}_{K}\right\} F_{A}^{\times} \backslash K_{A}^{\times} / K^{\times}$．For any $x \in \boldsymbol{X}$ and $y \in \boldsymbol{Y}$ ，let $\Omega_{0, x, y}$
$=\left(L, \Phi, \rho ; F^{+} T, y \mathfrak{M} x\right)$, and let $\Sigma\left(\Omega_{0, x, y}\right)$ be the family of weak PELstructures of type $\Omega_{0, x, y}$. By 7.3 of Shimura [9], we may assume that $\Sigma\left(\Omega_{0, x, y}\right)$ is parametrized by the complex upper-half-plane \mathscr{S}_{C}, and that the action of $\alpha \in B^{+} \cong G^{+}(T)$ coincides with the usual action as an element of $B^{+} \cong G L^{+}(2, R)$.

We say that $\mathcal{R}_{z} \in \Sigma\left(\Omega_{0, x, y}\right)(z \in \mathfrak{S})$ is singular if $\left\{\alpha \in B^{+} \mid \alpha(z)=z\right.$, $y \mathfrak{M} x \alpha \subset y \mathfrak{M} x\}$ is the set $\mathfrak{r}\left(\mathscr{R}_{z}\right) \backslash\{0\}$ of non-zero elements of an order $\mathfrak{r}\left(\mathscr{R}_{z}\right)$ of a totally imaginary quadratic extension $M\left(\mathscr{R}_{z}\right)$ of F. Let \mathcal{C} be the set consisting of all isomorphism classes of singular $\mathcal{R}_{z} \in \Sigma\left(\Omega_{0, x, y}\right)$ $(x \in \boldsymbol{X}, y \in \boldsymbol{Y}, z \in \mathfrak{F})$ such that \mathfrak{p} is decomposed in $M\left(\mathscr{R}_{z}\right) / F$ and the conductor of $\mathfrak{r}\left(\mathscr{R}_{z}\right)$ is prime to \mathfrak{p}. Let \mathscr{F} be the set consisting of all isomorphism classes of $\bar{R}_{z}=\mathscr{R}_{z}$ modulo \mathfrak{P} of elements \mathscr{R}_{z} of $\Sigma\left(\Omega_{0, x, y}\right)$ $(x \in \boldsymbol{X}, y \in \boldsymbol{Y}, z \in \mathfrak{F})$ which can be defined over $\overline{\boldsymbol{F}}_{p}$, and let \mathscr{F}_{s} and $\mathscr{F}_{s s}$ be the subsets of \mathscr{F} consisting of singular elements and super-singular elements, respectively.

Theorem 3. (i) Let \mathcal{R}_{z} be a singular element of $\Sigma\left(\Omega_{0, x, y}\right)$ $(x \in \boldsymbol{X}, y \in \boldsymbol{Y})$. Then \mathbb{R}_{z} belongs to $\mathscr{F}^{(} . \widetilde{R}_{z}$ belongs to \mathscr{F}_{s} iff \mathfrak{p} is decomposed in $M\left(\mathcal{R}_{z}\right) / F$.
(ii) Reduction modulo \mathfrak{B} induces a bijection of \mathcal{C} to $\mathscr{F}_{s} . \quad$ Furthermore, for any two elements \mathcal{R} and \mathcal{R}^{\prime} of \mathcal{C}, reduction modulo \mathfrak{B} induces a bijection of $\operatorname{Hom}\left((A, \theta),\left(A^{\prime}, \theta^{\prime}\right)\right)$ to $\operatorname{Hom}\left((\tilde{A}, \tilde{\theta}),\left(\tilde{A}^{\prime}, \tilde{\theta}^{\prime}\right)\right)$.
(iii) Let \widetilde{R} be an element of $\mathscr{F}_{s s}$, and let End ($\left.\widetilde{R}\right)$ be the set of all isogenies of $\widetilde{\mathscr{R}}$ onto $\widetilde{\mathscr{R}}$. Then $\operatorname{End}(\widetilde{\mathscr{R}})$ can be identified with the set of all \mathfrak{r}_{F}-valued points of the F-group $K^{\times} \cdot D^{\times}=\left\{k \cdot d \in K \otimes_{F} D \mid k \in K^{\times}\right.$, $\left.d \in D^{\times}\right\}$(cf. Theorem 2). For each prime ideal \mathfrak{l} of F, End ($\left.\widetilde{R}\right)_{\mathfrak{l}}$ is identified with $\left\{k \cdot d \in K_{\mathfrak{\imath}} \otimes_{F_{1}} D_{\mathfrak{\imath}} \mid k \in K_{\mathfrak{\imath}}^{\times} \cap \mathfrak{x}_{K_{1}}\right.$, $\left.d \in D_{\mathrm{\imath}}^{\times} \cap \mathcal{O}_{\mathrm{t}}\right\}$, where $\mathcal{O}_{\mathfrak{l}}$ is a maximal order of D_{1}. Furthermore, (a) for any element $k \cdot d$ of $K_{A}^{\times} \cdot D_{A}^{\times}$, the $k \cdot d$-multiplication of $\widetilde{\mathcal{R}}$ belongs to $\mathscr{F}_{s s}$ and (b) this map induces a bijection of Π_{1} End $(\widetilde{R})_{1} \cdot K_{\infty}^{\times} \cdot D_{\infty}^{\times} \backslash K_{A}^{\times} \cdot D_{A}^{\times} / K^{\times} \cdot D^{\times}$to $\mathscr{F}_{s s}$. In particular, any two elements of $\mathscr{F}_{\text {ss }}$ are separably isogenious.

Remark. Let e be an integral ideal of K which is prime to $\mathfrak{p}_{1} \mathfrak{\beta}_{2} \ldots \mathfrak{P}_{t}$. Then we can obtain similar results for the family of weak PEL-structures (or PEL-structures) with level e-structures. In particular, by making use of Eichler [3] and Shimizu [8], we can show that the number of super-singular PEL-structures with level e-structures coincides with the number which Ihara defined in [4], if e is divisible by a rational integer e satisfying $e \geq 3$.

Remark. Our results hold without assuming $F \neq \boldsymbol{Q}$ (cf. Shimura [9, p. 192, footnote 4]).

References

[1] M. Demazure: Lecture on p-divisible groups. Lect. notes in Math., vol. 302, 1-98 (1972).
[2] M. Deuring: Die Typen der Multiplicatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hamburg, 14, 197-272 (1941).
[3] M. Eichler: Über die Idealklassenzahl total definiter Quarternionalgebren. Math. Z., 43, 102-109 (1938).
[4] Y. Ihara: On congruence monodromy problems. vol. 1, Lect. note at Univ. of Tokyo (1968).
[5] - -: Some fundamental groups in the arithmetic of algebraic curves over finite fields. Proc. Nat. Acad. Sci. U. S. A., 72, 3281-3284 (1975).
[6] I. Manin: The theory of commutative formal groups over fields of finite characteristics. Russian Math. Survey, 18, 1-83 (1963) (English trans.).
[7] Y. Morita: On potential good reduction of abelian varieties. J. Fac. Sci. Univ. Tokyo, sec. IA, 22, 437-447 (1975).
[8] H. Shimizu: On zeta functions of quaternion algebras. Ann. of Math., 81, 166-193 (1965).
[9] G. Shimura: Construction of class fields and zeta functions of algebraic curves. Ibid., 85, 58-159 (1967).
[10] -: On canonical models of arithmetic quotients of bounded symmetric domains. Ibid., 91, 144-222 (1970).
[11] J. Tate: Endomorphisms of abelian varieties over finite fields. Invent. Math., 2, 134-144 (1966).
[12] W. C. Waterhouse and J. S. Milne: Abelian varieties over finite fields. Proc. Symp. Pure Math., 20, 53-64 (1971).

