79. Classification of a Family of Abelian Varieties Parametrized by Reduction modulo 彩 of a Shimura Curve

By Yasuo MORITA Department of Mathematics, Faculty of Science, Hokkaido University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1980)

Deuring classified elliptic curve defined over \overline{F}_p in [2]. In this paper, we obtain similar results for a certain family of abelian varieties parametrized by reduction modulo \mathfrak{P} of a Shimura curve. The results may be regarded as a generalization of an unpublished paper of Shimura in which he obtained similar results for the canonical family of abelian varieties parametrized by reduction modulo \mathfrak{P} of the Shimura curve for the unit group of a maximal order of an indefinite quaternion algebra over Q.

§1. Notation and assumptions. Let the notation be as in Shimura [9] (and [10]), and let $\Omega_0 = (L, \Phi, \rho; F^+ \cdot T, \mathfrak{M})$ be the weak PEL-type which Shimura constructed in 7.13 of [9] (we assume that Ω_0 has no level structure). Let p be a prime number, and let $p = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t}$ be the factorization of p in \mathfrak{r}_F . Let $\mathfrak{p} = \mathfrak{p}_1$, and let \mathfrak{P} be an extension of \mathfrak{p} to a place of C. We assume that (i) \mathfrak{p} does not divide the discriminant D(B/F) of B; (ii) each \mathfrak{p}_i $(i=1,\cdots,t)$ is decomposed in K/F as $\mathfrak{p}_i = \mathfrak{P}_i \mathfrak{P}_i$; (iii) $\tau_1 = \mathrm{id}$. and none of the $\mathfrak{P}_t^{\mathfrak{r}_p}(i=1,\cdots,t,\nu=1,\cdots,g)$ is contained in \mathfrak{P} . We note that there exist infinitely many such extensions $(K, \tau_1, \cdots, \tau_g)$ for each given $(F, \tau_{0,1} = \mathrm{id}, \cdots, \tau_{0,g})$.

§2. Representations of r_{κ} on tangent spaces. Let $\Re = (A, \mathcal{D}, \theta)$ be a weak PEL-structure of type Ω_0 . If \Re has good reduction at \Re , then let $\widehat{\Re} = (\widetilde{A}, \widetilde{\mathcal{D}}, \widetilde{\theta})$ be \Re modulo \Re (cf. Morita [7]). Then we have a representation Σ of the ring r_{κ}/pr_{κ} on the tangent space at the origin of \widetilde{A} . Since this representation is obtained by taking reduction modulo \Re of the representation of r_{κ} at the origin of A, and since \Re is of type Ω_0 , we can determine Σ . The result is the following: For each \Re_i , let f_i and π_i be the residue degree of \mathfrak{p}_i and a prime element of \Re_i , and let $\tau(i)$ be an element of $\{\tau_1, \dots, \tau_q\}$ satisfying $\Re_i^{\tau(i)} \subseteq \Re$. We assume $\tau(1) = \tau_1$. Since $\mathfrak{o}_{\mathfrak{p}} \cong M_2(r_{F\mathfrak{p}})$, and since elements of \mathfrak{o} and elements of r_{κ} commute, Σ is the direct sum of two copies of a representation Σ' of r_{κ} . Let α be an element of r_{κ} . Then the set of eigen values of $\Sigma'(\alpha)$ is $\{\alpha \mod \Re(2e_1-1 \text{ times}), \overline{\alpha} \mod \Re(\operatorname{once}), \alpha^{pf_{\tau}(i)} \mod \Re(1 \le i \le t, 0 \le j \le f_i - 1, (i, j) \ne (1, 1), 2e_i \text{ times})\}$. Accordingly, we can decompose Σ' into the direct sum of the subrepresentations Σ'_{11} , $\overline{\Sigma}'_{11}$, Σ'_{ij} ((*i*, *j*) \neq (1, 1)). Then $\Sigma'_{11}(\pi_i)$ and $\Sigma'_{ij}(\pi_i)$ are represented by

and

$$egin{pmatrix} 0&1&&\ &\cdot&\cdot&\cdot\ &\cdot&\cdot&1\ &&\cdot&1\ &&&0\ \end{pmatrix}\in M_{e_i}(F_p)\oplus M_{e_i}(F_p).$$

§ 3. The Frobenius element. Now we assume that $\tilde{\mathcal{R}}$ is defined over a finite field F_q . Let π be the q-th power endomorphism of \tilde{A} . We say $\tilde{\mathcal{R}}$ is super-singular if some power of π belongs to $\tilde{\theta}(\mathbf{r}_{\kappa})$. Otherwise we say $\tilde{\mathcal{R}}$ is singular. Let $G_{n,m}$ be as in Manin [6]. Then we have the following

Theorem 1. If $\tilde{\mathbb{R}}$ is super-singular,

(i) End $(\tilde{A}, \tilde{\theta}) \otimes_{\mathbb{Z}} \mathbb{Q}$ is isomorphic to the tensor product over F of K and the totally definite quaternion algebra D over F with discriminant $\mathfrak{p}D(B/F)$.

(ii) If $q = p^{2af_1}$ is sufficiently large, then

 $(\tilde{\theta}^{-1}(\pi)) = \mathfrak{P}_1^{(2e_1f_1-1)a} \overline{\mathfrak{P}}_1^a \mathfrak{P}_2^{2e_2af_1} \cdots \mathfrak{P}_t^{2e_taf_1}.$

(iii) Let $T_p(\tilde{A}) = \bigoplus_{i=1}^t (T_{\mathfrak{F}_i}(\tilde{A}) \oplus T_{\overline{\mathfrak{F}}_i}(\tilde{A}))$ be the decomposition of the p-divisible group $T_p(\tilde{A})$ of \tilde{A} by the action of \mathfrak{r}_{κ} . Then (a) the $T_{\mathfrak{F}_i}(\tilde{A})$ ($i \geq 2$) are multiplicative, (b) the $T_{\overline{\mathfrak{F}}_i}(\tilde{A})$ ($i \geq 2$) are etale, and (c) $T_{\mathfrak{F}_i}(\tilde{A})$ $\cong 2G_{2e_1f_1-1,1}$ and $T_{\mathfrak{F}_i}(\tilde{A}) \cong 2G_{1,2e_1f_1-1}$.

Theorem 2. If $\tilde{\mathcal{R}}$ is singular,

(i) End $(\tilde{A}, \tilde{\theta}) \otimes_{\mathbb{Z}} \mathbb{Q}$ is isomorphic to the tensor product over F of K and another totally imaginary quadratic extension M of F such that (a) $B \otimes_{\mathbb{F}} M \cong M_2(M)$ and (b) \mathfrak{p} is decomposed in M/F.

(ii) Let $\mathfrak{p} = \mathfrak{Q}' \mathfrak{Q}'' \overline{\mathfrak{Q}}' \mathfrak{Q}' (\mathfrak{P}_1 \subseteq \mathfrak{Q}', \mathfrak{P}_1 \subseteq \mathfrak{Q}'', \mathfrak{Q}' \subseteq \mathfrak{P})$ be the decomposition of \mathfrak{p} in $K \otimes_F M$. If $q = p^{a_{f_1}}$ is sufficiently large, then there exist elements λ and μ of M and K such that $\tilde{\theta}^{-1}(\pi) = \lambda \mu$, $(\lambda) = (\overline{\mathfrak{Q}}' \mathfrak{Q}'')^a$ and $(\mu) = \mathfrak{P}_1^{(e_1f_1-1)a} \mathfrak{P}_2^{e_2f_1a} \cdots \mathfrak{P}_t^{e_tf_1a}$.

(iii) Let $T_p(\tilde{A}) \cong \bigoplus_{i=1}^t (T_{\mathfrak{P}_i}(\tilde{A}) \oplus T_{\overline{\mathfrak{P}}_i}(\tilde{A}))$ be the decomposition of the *p*-divisible group $T_p(\tilde{A})$ of \tilde{A} by the action of \mathfrak{r}_{κ} . Then (a) the $T_{\mathfrak{P}_i}(\tilde{A})$ (*i*≥2) are multiplicative, (b) the $T_{\overline{\mathfrak{P}}_i}(\tilde{A})$ (*i*≥2) are etale, and (c) $T_{\mathfrak{P}_i}(\tilde{A})$ $\cong 2(G_{e_1f_1-1,1} \oplus e_1f_1G_{1,0})$ and $T_{\overline{\mathfrak{P}}_i}(\tilde{A}) \cong 2(G_{1,e_1f_1-1} \oplus e_1f_1G_{0,1}).$

§4. Classification. Let $\Omega_0 = (L, \Phi, \rho; F^*T, \mathfrak{M})$ be as in §1. Then $G^+(T) = \{\alpha \in L \mid T(x\alpha, y\alpha) = \mu(\alpha)T(x, y) \text{ for some } \mu(\alpha) \in F^+\} = K^{\times}B^+$. Let X and Y be sets of representatives of $\{x \in B_A^{\times} \mid 0x = 0\} \setminus B_A^{\times}/B^+$ and $\{x \in K_A^{\times} \mid \mathfrak{r}_K x = \mathfrak{r}_k\}F_A^{\times} \setminus K_A^{\times}/K^{\times}$. For any $x \in X$ and $y \in Y$, let $\Omega_{0,x,y}$

No. 7]

 $=(L, \Phi, \rho; F^{+}T, y\mathfrak{M}x)$, and let $\Sigma(\Omega_{0,x,y})$ be the family of weak PELstructures of type $\Omega_{0,x,y}$. By 7.3 of Shimura [9], we may assume that $\Sigma(\Omega_{0,x,y})$ is parametrized by the complex upper-half-plane \mathfrak{S} , and that the action of $\alpha \in B^{+} \subseteq G^{+}(T)$ coincides with the usual action as an element of $B^{+} \subseteq GL^{+}(2, \mathbb{R})$.

We say that $\Re_z \in \Sigma(\Omega_{0,x,y})(z \in \mathfrak{H})$ is singular if $\{\alpha \in B^+ | \alpha(z) = z, y\mathfrak{M}x\alpha \subset y\mathfrak{M}x\}$ is the set $\mathfrak{r}(\mathfrak{R}_z) \setminus \{0\}$ of non-zero elements of an order $\mathfrak{r}(\mathfrak{R}_z)$ of a totally imaginary quadratic extension $M(\mathfrak{R}_z)$ of F. Let \mathcal{C} be the set consisting of all isomorphism classes of singular $\Re_z \in \Sigma(\Omega_{0,x,y})$ $(x \in X, y \in Y, z \in \mathfrak{H})$ such that \mathfrak{P} is decomposed in $M(\mathfrak{R}_z)/F$ and the conductor of $\mathfrak{r}(\mathfrak{R}_z)$ is prime to \mathfrak{P} . Let \mathcal{F} be the set consisting of all isomorphism classes of $\mathfrak{R}_z = \mathfrak{R}_z$ modulo \mathfrak{P} of elements \Re_z of $\Sigma(\Omega_{0,x,y})$ $(x \in X, y \in Y, z \in \mathfrak{H})$ which can be defined over \overline{F}_p , and let \mathfrak{F}_s and \mathfrak{F}_{ss} be the subsets of \mathfrak{F} consisting of singular elements and super-singular elements, respectively.

Theorem 3. (i) Let \mathcal{R}_z be a singular element of $\Sigma(\Omega_{0,x,y})$ $(x \in X, y \in Y)$. Then \mathcal{R}_z belongs to \mathcal{F} . $\tilde{\mathcal{R}}_z$ belongs to \mathcal{F}_s iff \mathfrak{p} is decomposed in $M(\mathcal{R}_z)/F$.

(ii) Reduction modulo \mathfrak{P} induces a bijection of \mathcal{C} to \mathcal{F}_s . Furthermore, for any two elements \mathfrak{R} and \mathfrak{R}' of \mathcal{C} , reduction modulo \mathfrak{P} induces a bijection of Hom $((\mathcal{A}, \theta), (\mathcal{A}', \theta'))$ to Hom $((\tilde{\mathcal{A}}, \tilde{\theta}), (\tilde{\mathcal{A}}', \tilde{\theta}'))$.

(iii) Let $\tilde{\mathbb{R}}$ be an element of \mathcal{F}_{ss} , and let End $(\tilde{\mathbb{R}})$ be the set of all isogenies of $\tilde{\mathbb{R}}$ onto $\tilde{\mathbb{R}}$. Then End $(\tilde{\mathbb{R}})$ can be identified with the set of all \mathfrak{r}_{F} -valued points of the F-group $K^{\times} \cdot D^{\times} = \{k \cdot d \in K \otimes_{F} D \mid k \in K^{\times}, d \in D^{\times}\}$ (cf. Theorem 2). For each prime ideal \mathfrak{l} of F, End $(\tilde{\mathbb{R}})_{\mathfrak{l}}$ is identified with $\{k \cdot d \in K_{\mathfrak{l}} \otimes_{F_{\mathfrak{l}}} D_{\mathfrak{l}} \mid k \in K_{\mathfrak{l}}^{\times} \cap \mathfrak{r}_{K_{\mathfrak{l}}}, d \in D_{\mathfrak{l}}^{\times} \cap \mathcal{O}_{\mathfrak{l}}\}$, where $\mathcal{O}_{\mathfrak{l}}$ is a maximal order of $D_{\mathfrak{l}}$. Furthermore, (a) for any element $k \cdot d$ of $K_{A}^{\times} \cdot D_{A}^{\times}$, the $k \cdot d$ -multiplication of $\tilde{\mathbb{R}}$ belongs to \mathcal{F}_{ss} and (b) this map induces a bijection of $\prod_{\mathfrak{l}}$ End $(\tilde{\mathbb{R}})_{\mathfrak{l}} \cdot K_{\infty}^{\times} \cdot D_{\infty}^{\times} \setminus K_{A}^{\times} \cdot D_{A}^{\times} / K^{\times} \cdot D^{\times}$ to \mathcal{F}_{ss} . In particular, any two elements of \mathcal{F}_{ss} are separably isogenious.

Remark. Let e be an integral ideal of K which is prime to $\mathfrak{p}_1\mathfrak{P}_2\cdots\mathfrak{P}_t$. Then we can obtain similar results for the family of weak PEL-structures (or PEL-structures) with level *e*-structures. In particular, by making use of Eichler [3] and Shimizu [8], we can show that the number of super-singular PEL-structures with level *e*-structures tures coincides with the number which Ihara defined in [4], if e is divisible by a rational integer e satisfying $e \geq 3$.

Remark. Our results hold without assuming $F \neq Q$ (cf. Shimura [9, p. 192, footnote 4]).

References

- M. Demazure: Lecture on p-divisible groups. Lect. notes in Math., vol. 302, 1-98 (1972).
- [2] M. Deuring: Die Typen der Multiplicatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hamburg, 14, 197-272 (1941).
- [3] M. Eichler: Über die Idealklassenzahl total definiter Quarternionalgebren. Math. Z., 43, 102-109 (1938).
- [4] Y. Ihara: On congruence monodromy problems. vol. 1, Lect. note at Univ. of Tokyo (1968).
- [5] ——: Some fundamental groups in the arithmetic of algebraic curves over finite fields. Proc. Nat. Acad. Sci. U. S. A., 72, 3281–3284 (1975).
- [6] I. Manin: The theory of commutative formal groups over fields of finite characteristics. Russian Math. Survey, 18, 1-83 (1963) (English trans.).
- [7] Y. Morita: On potential good reduction of abelian varieties. J. Fac. Sci. Univ. Tokyo, sec. IA, 22, 437-447 (1975).
- [8] H. Shimizu: On zeta functions of quaternion algebras. Ann. of Math., 81, 166-193 (1965).
- [9] G. Shimura: Construction of class fields and zeta functions of algebraic curves. Ibid., 85, 58-159 (1967).
- [10] ——: On canonical models of arithmetic quotients of bounded symmetric domains. Ibid., 91, 144-222 (1970).
- [11] J. Tate: Endomorphisms of abelian varieties over finite fields. Invent. Math., 2, 134-144 (1966).
- [12] W. C. Waterhouse and J. S. Milne: Abelian varieties over finite fields. Proc. Symp. Pure Math., 20, 53-64 (1971).