75. Remarks on the Lower Bound of a Linear Operator

By Gyokai NIKAIDO

Department of Mathematics, Science University of Tokyo (Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1980)

1. Introduction. Let X, Y be normed linear spaces and let T be a linear operator with domain D(T) in X and range R(T) in Y. By N(T), we denote the null space of T and set $n(T) = \dim N(T)$. The set of all closed linear operators from X to Y is denoted by C(X, Y).

The lower bound (or reduced minimum modulus), $\gamma(T)$, of T is defined by

$$\gamma(T) = \sup \{ \gamma : ||Tx|| \ge \gamma d(x, \mathbf{N}(T)) \ (x \in \mathbf{D}(T)) \}$$

where d(x, N(T)) denotes the distance from x to N(T). If X, Y are Banach spaces and $T \in \mathcal{C}(X, Y)$, then R(T) is closed if and only if $\gamma(T) > 0$ (cf. Kato [1, p. 231]). A closed linear operator with closed range is called *normally solvable*.

Now let Z be another normed linear space and let S be a linear operator from Y to Z. Then the following result is well known.

Theorem 1. Assume that

- (1) X, Y and Z are Banach spaces;
- (2) $T \in \mathcal{C}(X, Y)$ and $S \in \mathcal{C}(Y, Z)$ are normally solvable;
- (3) $n(S) < \infty$.

Then ST is also normally solvable.

For the proof of the above theorem, we refer to Kato [2, p. 277].

In this note, we are interested in the estimate of $\gamma(ST)$ from below in terms of $\gamma(S)$ and $\gamma(T)$. As a result, we shall obtain Theorem 1 above as a corollary.

2. Estimate of $\gamma(ST)$. Before we state our result, we shall explain some notations. Let E be a normed linear space and let M, N be closed subspaces of E. For such a pair (M, N), we define the quantity $\gamma(M, N)$ by

$$\gamma(M, N) = \inf \frac{d(u, N)}{d(u, M \cap N)}$$

where infimum is taken over all u such that $u \in M$ and $u \in N$. If $M \subset N$, we set $\gamma(M, N) = 1$. For a Banach space E, it is known that $\gamma(M, N) > 0$ if and only if M + N is closed in E. For details, we refer to Kato [1].

Let $x \in D(T)$. Then we have the following

Lemma 1. $d(Tx, N(S)) \ge \gamma(T)\gamma(R(T), N(S))d(x, N(ST))$.

Proof. Since we have

$$d(Tx, N(S)) \ge \gamma(R(T), N(S))d(Tx, N(S) \cap R(T)),$$

it suffices to prove that

$$d(Tx, N(S) \cap R(T)) \ge \gamma(T)d(x, N(ST)).$$

It follows from $TN(ST) = N(S) \cap R(T)$ that

$$d(Tx, N(S) \cap R(T) = \inf \{ ||T(x-z)|| : z \in N(ST) \}$$

$$\geq \gamma(T) \inf \{ d(x-z, N(T)) : z \in N(ST) \}$$

$$\geq \gamma(T)d(x, N(ST)).$$

This completes the proof of the lemma.

By using Lemma 1, we now obtain the estimate of $\gamma(ST)$ from below in terms of $\gamma(S)$ and $\gamma(T)$.

Proposition 1. $\gamma(ST) \ge \gamma(S)\gamma(T)\gamma(R(T), N(S))$.

Proof. Let $x \in D(ST)$. Then it follows from Lemma 1 that

$$||STx|| \ge \gamma(S)d(Tx, N(S))$$

$$\ge \gamma(S)\gamma(T)\gamma(R(T), N(S))d(x, N(ST)),$$

whence we have

$$\gamma(ST) \ge \gamma(S)\gamma(T)\gamma(R(T), N(S)).$$

3. Corollaries of Proposition 1. In this section, we state some corollaries of Proposition 1. We shall assume throughout that X, Y, Z are Banach spaces and $T \in \mathcal{C}(X,Y), S \in \mathcal{C}(Y,Z)$ are both normally solvable.

Corollary 1. Let T, S be bounded with D(T) = X and D(S) = Y. Then ST is normally solvable if and only if N(S) + R(T) is closed in Y.

Proof. Assume that ST is normally solvable. Then R(ST) is closed, so that $N(S)+R(T)=S^{-1}R(ST)$ is closed in Y since S is bounded with D(S)=Y. The converse is a direct consequence of Proposition 1.

Corollary 2. Assume that $n(S) < \infty$. Then ST is normally solvable.

Proof. Since $ST \in \mathcal{C}(X, \mathbb{Z})$ (cf. Kato [2, p. 277]), it suffices to note that $\gamma(R(T), N(S)) > 0$.

Finally, we shall consider a bounded normal operator T on a Hilbert space H. Then it is easy to verify that $\overline{R(T)} = N(T)^{\perp}$ and $N(T^n) = N(T)$ for every positive integer n, where $\overline{R(T)}$ denotes the closure of R(T) and $N(T)^{\perp}$ denotes the orthogonal complement of N(T).

Corollary 3. Assume that H is a Hilbert space and T is a normal operator on H. Then we have;

$$\gamma(T^n) \geq [\gamma(T)]^n \qquad (n=2,3,\cdots).$$

Proof. Let $n \ge 2$. Then it follows from Proposition 1 that

$$\gamma(T^n) \geq (\gamma_1 \gamma_2 \cdots \gamma_{n-1}) [\gamma(T)]^n,$$

where $\gamma_k = \gamma(R(T), N(T^k))$ $(k=1, 2, \dots, n-1)$. Hence it is enough to show that $\gamma_k = 1$ for $k = 1, 2, \dots, n-1$. However, by the remark preceding the corollary, we have

$$\gamma_k = \gamma(R(T), N(T^k)) = \gamma(R(T), N(T)) = 1,$$

which completes the proof.

Acknowledgement. The auther wishes to express his sincere gratitude to Prof. T. Shibata for his advice and encouragement.

References

- [1] T. Kato: Perturbation Theory for Linear Operators. Die Grundlehren der math. Wissenschaften. Band 132, 2nd ed., Springer-Verlag, Berlin and New York (1976).
- [2] —: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math., 6, 273-322 (1958).