75. Remarks on the Lower Bound of a Linear Operator

By Gyokai Nikaido
Department of Mathematics, Science University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1980)

1. Introduction. Let X, Y be normed linear spaces and let T be a linear operator with domain $\mathrm{D}(T)$ in X and range $\mathrm{R}(T)$ in Y. By $\mathrm{N}(T)$, we denote the null space of T and set $n(T)=\operatorname{dim} \mathrm{N}(T)$. The set of all closed linear operators from X to Y is denoted by $\mathcal{C}(X, Y)$.

The lower bound (or reduced minimum modulus), $\gamma(T)$, of T is defined by

$$
\gamma(T)=\sup \{\gamma:\|T x\| \geqq \gamma d(x, \mathrm{~N}(T))(x \in \mathrm{D}(T))\}
$$

where $d(x, \mathrm{~N}(T))$ denotes the distance from x to $\mathrm{N}(T)$. If X, Y are Banach spaces and $T \in \mathcal{C}(X, Y)$, then $\mathrm{R}(T)$ is closed if and only if $\gamma(T)$ >0 (cf. Kato [1, p. 231]). A closed linear operator with closed range is called normally solvable.

Now let Z be another normed linear space and let S be a linear operator from Y to Z. Then the following result is well known.

Theorem 1. Assume that
(1) X, Y and Z are Banach spaces;
(2) $T \in \mathcal{C}(X, Y)$ and $S \in \mathcal{C}(Y, Z)$ are normally solvable ;
(3) $n(S)<\infty$.

Then ST is also normally solvable.
For the proof of the above theorem, we refer to Kato [2, p. 277].
In this note, we are interested in the estimate of $\gamma(S T)$ from below in terms of $\gamma(S)$ and $\gamma(T)$. As a result, we shall obtain Theorem 1 above as a corollary.
2. Estimate of $\boldsymbol{\gamma}(\boldsymbol{S T} \boldsymbol{)}$. Before we state our result, we shall explain some notations. Let E be a normed linear space and let M, N be closed subspaces of E. For such a pair (M, N), we define the quantity $\gamma(M, N)$ by

$$
\gamma(M, N)=\inf \begin{gathered}
d(u, N) \\
d(u, M \cap N)
\end{gathered}
$$

where infimum is taken over all u such that $u \in M$ and $u \notin N$. If $M \subset N$, we set $\gamma(M, N)=1$. For a Banach space E, it is known that $\gamma(M, N)$ >0 if and only if $M+N$ is closed in E. For details, we refer to Kato [1].

Let $x \in \mathrm{D}(T)$. Then we have the following
Lemma 1. $d(T x, \mathrm{~N}(S)) \geqq \gamma(T) \gamma(\mathrm{R}(T), \mathrm{N}(S)) d(x, \mathrm{~N}(S T))$.
Proof. Since we have

$$
d(T x, \mathrm{~N}(S)) \geqq \gamma(\mathrm{R}(T), \mathrm{N}(S)) d(T x, \mathrm{~N}(S) \cap \mathrm{R}(T)),
$$

it suffices to prove that

$$
d(T x, \mathrm{~N}(S) \cap \mathrm{R}(T)) \geqq \gamma(T) d(x, \mathrm{~N}(S T))
$$

It follows from $T \mathrm{~N}(S T)=\mathrm{N}(S) \cap \mathrm{R}(T)$ that

$$
\begin{aligned}
d(T x, \mathrm{~N}(S) \cap \mathrm{R}(T) & =\inf \{\|T(x-z)\|: z \in \mathrm{~N}(S T)\} \\
& \geqq \gamma(T) \inf \{d(x-z, \mathrm{~N}(T)): z \in \mathrm{~N}(S T)\} \\
& \geqq \gamma(T) d(x, \mathrm{~N}(S T)) .
\end{aligned}
$$

This completes the proof of the lemma.
By using Lemma 1, we now obtain the estimate of $\gamma(S T)$ from below in terms of $\gamma(S)$ and $\gamma(T)$.

Proposition 1. $\gamma(S T) \geqq \gamma(S) \gamma(T) \gamma(\mathrm{R}(T), \mathrm{N}(S))$.
Proof. Let $x \in \mathrm{D}(S T)$. Then it follows from Lemma 1 that

$$
\begin{aligned}
\|S T x\| & \geqq \gamma(S) d(T x, \mathrm{~N}(S)) \\
& \geqq \gamma(S) \gamma(T) \gamma(\mathrm{R}(T), \mathrm{N}(S)) d(x, \mathrm{~N}(S T)),
\end{aligned}
$$

whence we have

$$
\gamma(S T) \geqq \gamma(S) \gamma(T) \gamma(\mathrm{R}(T), \mathrm{N}(S))
$$

3. Corollaries of Proposition 1. In this section, we state some corollaries of Proposition 1. We shall assume throughout that X, Y, Z are Banach spaces and $T \in \mathcal{C}(X, Y), S \in \mathcal{C}(Y, Z)$ are both normally solvable.

Corollary 1. Let T, S be bounded with $\mathrm{D}(T)=X$ and $\mathrm{D}(S)=Y$. Then ST is normally solvable if and only if $\mathrm{N}(S)+\mathrm{R}(T)$ is closed in Y.

Proof. Assume that $S T$ is normally solvable. Then $\mathrm{R}(S T)$ is closed, so that $\mathrm{N}(S)+\mathrm{R}(T)=S^{-1} \mathrm{R}(S T)$ is closed in Y since S is bounded with $\mathrm{D}(S)=Y$. The converse is a direct consequence of Proposition 1.

Corollary 2. Assume that $n(S)<\infty$. Then $S T$ is normally solvable.

Proof. Since $S T \in \mathcal{C}(X, Z)$ (cf. Kato [2, p. 277]), it suffices to note that $\gamma(\mathrm{R}(T), \mathrm{N}(S))>0$.

Finally, we shall consider a bounded normal operator T on a Hilbert space H. Then it is easy to verify that $\overline{\mathrm{R}}(T)=\mathrm{N}(T)^{\perp}$ and $\mathrm{N}\left(T^{n}\right)=\mathrm{N}(T)$ for every positive integer n, where $\overline{\mathrm{R}(T)}$ denotes the closure of $\mathrm{R}(T)$ and $\mathrm{N}(T)^{\perp}$ denotes the orthogonal complement of $\mathrm{N}(T)$.

Corollary 3. Assume that H is a Hilbert space and T is a normal operator on H. Then we have;

$$
\gamma\left(T^{n}\right) \geqq[\gamma(T)]^{n} \quad(n=2,3, \cdots)
$$

Proof. Let $n \geqq 2$. Then it follows from Proposition 1 that

$$
\gamma\left(T^{n}\right) \geqq\left(\gamma_{1} \gamma_{2} \cdots \gamma_{n-1}\right)[\gamma(T)]^{n}
$$

where $\gamma_{k}=\gamma\left(\mathrm{R}(T), \mathrm{N}\left(T^{k}\right)\right)(k=1,2, \cdots, n-1)$. Hence it is enough to show that $\gamma_{k}=1$ for $k=1,2, \cdots, n-1$. However, by the remark preceding the corollary, we have

$$
\gamma_{k}=\gamma\left(\mathrm{R}(T), \mathrm{N}\left(T^{k}\right)\right)=\gamma(\mathrm{R}(T), \mathrm{N}(T))=1
$$

which completes the proof.
Acknowledgement. The auther wishes to express his sincere gratitude to Prof. T. Shibata for his advice and encouragement.

References

[1] T. Kato: Perturbation Theory for Linear Operators. Die Grundlehren der math. Wissenschaften. Band 132, 2nd ed., Springer-Verlag, Berlin and New York (1976).
[2] -: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math., 6, 273-322 (1958).

