73. On the Variation of Periods of Holomorphic Γ_{n0} -Reproducing Differentials

By Masahiko TANIGUCHI Department of Mathematics, Kyoto University

(Communicated by Kôsaku YOSIDA, M. J. A., Sept. 12, 1980)

1. Let R^{0} be an arbitrary Riemann surfaces and fix a 1-cycle c and a Beltrami differential μ on R^{0} arbitrarily. For every t with $0 \le t < 1$ we denote by f^{t} and R^{t} the quasiconformal mapping from R^{0} with the complex dilatation $t\mu$ and the Riemann surface $f^{t}(R^{0})$, respectively, and denote the 1-cycle $f^{t}(d)$ by the same d for every 1-cycle d on R^{0} .

Now let θ_c^t be the holomorphic Γ_{h0} -reproducing differential for a given c on R^t . (Cf. [2, §1.5], and recall that $\theta_c^t = \theta_c(\Gamma_{h0}(R^t))$ in the notation of that paper.) Then the main purpose of this paper is to show the following

Theorem 1. For every 1-cycle d, we have that

Corollary.
$$\int_{d} \theta_{c}^{t} - \int_{d} \theta_{c}^{0} = t \cdot \operatorname{Re} \iint_{\mathbb{R}^{0}} \mu \cdot \theta_{c}^{0} \cdot \theta_{d}^{0} + O(t^{2})$$
$$When \ \theta_{c}^{0} \neq 0, \ then \ it \ holds \ that$$
$$- \frac{d}{dt} \|\theta_{c}^{t}\|_{\mathbb{R}^{t}}(0) = t \cdot \|\theta_{c}^{0}\|_{\mathbb{R}^{0}}^{-1} \cdot \operatorname{Re} \iint_{\mathbb{R}^{0}} \mu(\theta_{c}^{0})^{2}.$$

Because $\|\theta_c^t\|_{R^t}^2 = 2 \int_c \theta_c^t$, Corollary follows at once from Theorem 1. Here for a holomorphic quadratic differential $\phi = a(z)dz^2$ and a Beltrami differential $\mu = \mu(z)(d\bar{z}/dz)$ on R^0 , we set

$$\iint_{R^0} \mu \cdot \phi = \iint_{R^0} \mu(z) \cdot a(z) |dz \wedge d\bar{z}|.$$

The author is very grateful to Profs. Y. Kusunoki and F. Maitani for their helpful suggestions.

2. First for every d and t, let σ_d^t and ω_d^t the reproducers of d in $\Gamma_{h0}(R^t)$ and $\Gamma_h(R^t)$, respectively, and set $\theta = \theta_c^t \circ f^t - \theta_c^0$, $\theta_1 = \sigma_c^t \circ f^t - \sigma_c^0$ and $i\theta_2 = \theta - \theta_1$. Recall that $\theta_d^t = \sigma_d^t + i^*\sigma_d^t$, and the following facts are known.

Lemma 1. 1) $\theta_1 \in \Gamma_{c0}(R^0)$, 2) $(\theta_2, \omega_d^0)_{R^0} = 0$.

Proof. 1) follows at once from [3, Theorem 3], and by [3, Theorem 4], we have $((*\sigma_c^t) \circ f^t, \omega_d^0)_{R^0} = (*\sigma_c^t, \omega_c^t)_{R^t} = c \times d = (*\sigma_c^0, \omega_d^0)_{R^0}$. Q.E.D.

Lemma 2. 1) $\theta_2 \in \Gamma_e(R^0)$, 2) $(\theta_1, *\theta_2) = 0$, 3) $(\theta_1, \omega_d^0)_{R^0} = (\theta_1, \sigma_d^0)_{R^0}$.

Proof. Because $\{\omega_a^0: d \text{ is any 1-cycle on } R^0\}$ spans $\Gamma_{h0}^*(R^0)$, 1) follows from Lemma 1, 2) and facts that $\theta_2 \in \Gamma_c(R^0)$ and $\Gamma_c(R^0) = \Gamma_{h0}^*(R^0) + \Gamma_e(R^0)$. And because $\Gamma(R^0) = \Gamma_{c0}(R^0) + \Gamma_e^*(R^0)$, 2) follows from

M. TANIGUCHI

Lemmas 1, 1) and 2, 1), and 3) follows from Lemma 1, 1) and the fact that $\omega_a^0 - \sigma_a^0 \in \Gamma_{he}^*(R^0)$. Q.E.D.

Now by Lemma 2, 2) we have $(\theta, *\theta) = 0$, hence by the same argument as in the proof of [2, Theorem 1] (cf. [2, Theorem 3]) we can show the following

Theorem 2. Letting $\|\mu\|_{\infty} = \operatorname{ess} \cdot \sup_{R^0} |\mu| = k$ (<1), we have that

$$\|\theta_{c}^{t}\circ f^{t}-\theta_{c}^{0}\|_{R^{0}}\leq rac{2tk}{1-tk}\|\theta_{c}^{0}\|_{R^{0}}.$$

3. The proof of Theorem 1. First by [3, Theorem 4] it holds that

$$I = \int_{a} \theta_{c}^{t} - \int_{a} \theta_{c}^{0} = (\theta_{c}^{t}, \omega_{d}^{t})_{R^{t}} - (\theta_{c}^{0}, \omega_{d}^{0})_{R^{0}}$$
$$= (\theta_{c}^{t} \circ f^{t}, \omega_{d}^{0})_{R^{0}} - (\theta_{c}^{0}, \omega_{d}^{0})_{R^{0}} = (\theta, \omega_{d}^{0})_{R^{0}}$$

Hence by Lemmas 1, 2) and 2, 3) we have that

$$U = (\theta_1, \omega_d^0)_{R^0} = (\theta_1, \sigma_d^0)_{R^0}.$$

On the other hand, Re $(\theta, \bar{\theta}_d^0) = (\theta_1, \sigma_d^0)_{R^0} - (\theta_2, *\sigma_d^0)_{R^0}$, hence by Lemma 2, 1) we have that

$$\begin{split} I &= \operatorname{Re}\left(\theta, \ \bar{\theta}_{d}^{0}\right) = \operatorname{Re} \iint_{\mathbb{R}^{0}} \theta \wedge {}^{*}\theta_{d}^{0} \\ &= \operatorname{Re} \iint_{\mathbb{R}^{0}} a_{c}^{t}(f^{t}(z)) \cdot f_{\bar{z}}^{t}(z) d\bar{z} \wedge (-i) a_{d}^{0}(z) dz \\ &= \operatorname{Re} \iint_{\mathbb{R}^{0}} t \mu(z) \cdot a_{c}^{t}(f^{t}(z)) \cdot f_{z}^{t}(z) \cdot a_{d}^{0}(z) |dz \wedge d\bar{z}|, \end{split}$$

where, letting z^t and $z=z^0$ be the local parameter on R^t and R^0 respectively, we set $\theta_c^t = a_c^t(z^t)dz^t$ and $\theta_d^0 = a_d^0(z)dz$.

Since by Theorem 2 it holds that

$$egin{aligned} & \left| \iint_{R^0} \mu(z) \cdot a^t_c(f^t(z)) \cdot f^t_z(z) \cdot a^0_d(z) \left| dz \wedge dar{z}
ight| - \iint_{R^0} \mu(z) \cdot a^0_c(z) \cdot a^0_d(z) \left| dz \wedge dar{z}
ight|
ight| \ & \leq & \left\| \mu
ight\|_{\infty} \cdot \| heta^0_d \|_{R^0} \cdot \| heta^t_c \circ f^t - heta^0_c \|_{R^0} = O(t), \end{aligned}$$

we conclude that

$$I = t \cdot \operatorname{Re} \iint_{R^0} \mu \cdot \theta_c^0 \cdot \theta_d^0 + O(t^2).$$

Thus we have shown Theorem 1.

4. Remarks. Prof. Y. Kusunoki proved in [1] a similar results as Theorem 1 for periods of normal differentials on Riemann surfaces of class O'', and showed the complex differentiability of period matrix on the Teichmüller space of such a surface with respect to the Bers' coordinates.

And for the holomorphic reproducing differential $\omega_c^t + i^* \omega_c^t$, Prof. K. Oikawa proved the same formula as in Theorem 1 in the case that the Beltrami differential μ has a compact support, and the general case can be treated similarly as above.

316

References

- [1] Kusunoki, Y.: Differentiability of period matrices in Teichmüller spaces (to appear).
- [2] Kusunoki, Y., and Taniguchi, M.: A continuity property of holomorphic differentials under quasiconformal deformations (to appear).
- [3] Minda, C. D.: Square integrable differentials on Riemann surfaces and quasiconformal mappings. Trans. Amer. Math. Soc., **195**, 365-381 (1974).