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Introduction. A. Marden 2 remarked that a quasiconformai
homeomorphism of Riemann surfaces naturally induced an isomorphism
f of the corresponding Hilbert spaces of square integrable differentials
and also an isomorphism f of the Hilbert subspaces whose elements
are harmonic differentials. Further he showed that the isomorphisms
preserve several known important subspaces. D. Minda 3 investi-
gated some other subspaces from this point of view and gave certain
applications. In his article, it is remarked that f: does not always
preserve the subspaces F, F and F*o. He asked whether any of the
classes Fse, F*e and F* is preserved by f in general.

The purpose of this note is to show that f: does not always preserve
these classes.

1. Let R be a Riemann surface and F= F(R) be the Hilbert space
of square integrable complex differentials on R, where the inner
product is given by the form"

(0)1, (J)2)-’-((-/)1, O)2)R--’.I.I O)lA2

=if;
where o) .dz+ b ;de (2"= 1, 2) in terms of local prmeter z. As for
the notations of subspaees of F we shall follow Ahlfors-Sario 1 and
make use of basic results in this reference.

2. Now suppose that f" R’--R is a quasieonformal mapping of
a Riemann surface R’ onto a Riemann surface R. Then f induces art

isomorphism f’F(R)---F(R’) so that
f(o)) [A(f)f +B(f)(f-)]d-Jr- [A(f)f -t- B(f)(f)]d

in a neighbourhood of 1)’, where o)=A(z)dz+B(z)d in terms of a local
parameter z in a neighbourhood of p= f(p’), a local parameter about
p’ and f,f, (f), (f) are distributional derivatives of f and f-. Let
P denote the projection from F to F whose elements are harmonie
differentials. Then the mapping f=P f gives an isomorphism
from F(R) to F(R’) (el. 2 ], ]). Let (C’)* Fo(R’)* be the period
reproducing differential for a cycle C’ on R’ and (f(C’))* Fo(R)* be
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the one for the cycle f(C’) on R. We know the following propositions
due to A. Marden and D. Minda (cL 2 ], 3 ]).

Proposition 1. If f" R’-R and g" R-R" are quasiconformal
mappings, then (go f) f g and (go f)=f; g. If f is an identity
mapping, then f andf are identity mappings of F and F, respectively.

Proposition 2. Let f be a quasiconformal mapping form R’ to
R. Then

( ) (r, a(f(C’))*)=(f(r), a(C’)*), for r e F(R),
(w, a(f(C’))*),=(f(w), a(C’)*), for e F(R),

( ii (f(F(R)) F(R’), where F=F, F,, F, Fo,
(f(F(R))= F(R’), where F=Fse, F, Fo, F,.

3. We first remark the following
Lemma 3. Let f be a quasiconformal mapping from R’ to R.

Then
(f(r)*, f(v*)),=(v, v) for r, r e F(R),
(f(w)*, f(w*)),= (0, w.) for o, oo. e F(R).

Proof. Let r=Adz+Bd (]=1,2). We have
(f(r), f(v*)*),

=--i
’
(AA.+BB)(Ifl--[fI)dd

i.[[ (A-+BB)dzd
=-(, r0.

Thus the first equality ollows. Next by the orthogonal decomposition
F F 4- Fo/F, we can get the second equality.

Remark. By this lemma,
(w, a(f(C’))*)- (f2(w)*, f2(-a(f(C’)))),

(f(w), f(a(f(C’))) *),.
Hence we know f(a(f(C’)))*=a(C’)*=f*(a(f(C’))*) which gives a
relation between f2 and f* induced from the ho-mapping f [3 ].

4. We shall prove
Proposition 4. Let F and F. be subspaces of F and F be orthog-

onal to F. If f(F(R)* 4- F(R)*)= F(R’)* 4- F(R’)* and f(F(R))
F(R’), then f(F.(R)*)= F.(R’)*.

Proof. If w. e F(R), then f(o*) e F(R’)* 4- F(R’)*. By Lemma
3, for any w e F(R)

(f(w)* won O.
Hence f(w*) is orthogonal to f(F(R))*=I"(R’)* and f:(F.(R)*)
cF.(R’)*. With the aid of Proposition 1, we can apply this to (f-)
and we have

(f-)(F(R’)*)c F.(R)*,
F.(R’)*=f (f-)(F.(R’)*)cf(F.(R)*).

Thus we get the conclusion.
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If we make use of the orthogonal decompositions"
/ :r ,+ +,o :r +,

we have
Corollary 5. ( f(F(R))=F(R’)f(Fe(R)

F(R’) F,(R’)*,
(ii) f(Fo(R)*)= Fo(R’)*@f(F(R)*)=F(R’)*,
(iii) f(F(R)*)=F(R’)*@f(F(R)*)=
5. Now there exist Riemann surfaces R 0. and R’ e O. which

have a quasiconformal mapping f rom R’ to R. Then we clearly
have f(F(R))
So by Corollary 5, f(F(R))F(R’). Since F= C1 (Fo+Fo) and
f(Fo(R)) Fo(R’), we havef(Fo(R)*) Fo(R’)* (cf. 3 ]). It ollows
by Corollary 5 that f(F(R)*)F(R’)*.

Next we give an example that f: does not preserve F[ and FZs.
Take rectangles

R={(x, y); --axa, --byb} (i=1, 2)
and discs D and D in R;

D,={(x, y); x+(y--dYr},
D’ {(x, y) x + (y+d)r},
D {(x, y), (x- d) +y r},
D’ {(x, y) (x + d) +yr}.

Denote by A, A the vertical sides of R nd by B, the horizontal
sides. We identify A and
torus rom R. Further we remove the discs D and D’ rom the torus
and denote it by T. Let w be a harmonic unction on T such that
w(x,y)=l on 3D, =0 on 3D. Then F(T)={cdw}. From the
symmetricity, we have

I dw=0 and I dwO.
A A

On the other hand, there exists a quasiconformal mapping f rom T,
to T so that f(3D)=3D, f(3D’)=3D, f(A,)=A and f(B)=B. By

Proposition 2, [ f(dw)=O. Hence we have f(F(T)*)F(T)*

and f(Fe(T)*)F(T)*. Further by F=F F+F, we
have f(F(T) F(T)*)Fs(T) Fe(T)*. Thus we have.Proposition 6. The classes F,F,FF and FZ are not
always preserved by f.

6. Finally we remark that
Proposition 7. Let f be an extremal quasiconformal homeomor-

phism from a compact Riemann surface R’ to R. Assume that
f(a(f(C’))*)=a(C’)* for any cycle C’ in R’. Then f is a conformal
mapping.

Proof. We have f(a(f(C’)) +ia(f(C’))*)=a(C’) +ia(C’)*. Hence
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the normalized holomorphic differentials on R is mapped byf to those
on R’. They are the same periods for corresponding cycle, i.e., their
period matrices coinside. Thus by the Torelli’s theorem, R’ is con-
2ormal to R by f.
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