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1. Introduction. Let
boundary and w be a fixed point in tg. For ally sufficiently small
e0, let B be the ball defined by

B,= {z e [z-w[}.
Let/2 be the bounded domain defined by tg--9\B,. Then the bound-
ary of t9 consists of 7 and

Let 0/I(D_>/.(D_>. be the eigenvalues of the Laplacian with
the Dirichlet condition on.3B. Andlet0/p_>... betheeigen-
values of the Laplacian in 9 with the Dirichlet condition on . We
arrange them repeatedly according to their multiplicities.

The main aim of this note is to give an asymptotic expression of

/(e) when tends to zero.
We have the ollowing

Theorem 1. Let [2 be a bounded domain in R with C boundary

7. Fix ]. Assume that the multiplicity of tj is equal to one, then
(1.1) /j(e)-/- 2z(log (1/e))-l(w)2+O((log (l/D) -2)
holds when e tends to zero. Here denotes the eigenfunction of the
Laplacian with the Dirichlet condition on satisfying

p(x)dx 1.

For the case n=3, we have the ollowing

Theorem 2. Let 9 be a bounded domain in R with C boundary. Fix ]. Assume that the multiplicity of [2 is equal to one, then
(1.2) /(e) --/ 4j(w) / O(e/)
holds when tends to zero. Here denotes the normalized eigen-

function associated with/.
In 2 we give a rough sketch of proof of Theorem 1. To prove

Theorem 1 we employ the singular Hadamard variational formula for
the Green’s function of the Laplacian due to 5 ]. The details of this
paper will be given in 4 ].

2. Outline of proof of Theorem 1. In this section we give

a rough sketch of proof of Theorem 1.
Let G(x, y)be the Green’s function on /2, that is, it satisfies the

following"
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AxG(x, y)=-3(x--y) x, y
G(x, y)lxer=0 y e/2.

Fix y e/2. Then it is well known that
(2.1) lim (G(x, y)+(2) -1 log Ix-y])=Co

Fix w e/2. For any sufficiently small e0, let o be the bounded
domain defined by

w,= [x e G(x, w)<_ (2) -1 log (l/s)}.
We put ,- t9\.

Let G, and H be a bounded operator in L(o,) defined by

(2.2) (G,f)(x)= G(x, y)f(y)dy
d

and

(2.3) (H,f)(x)=f (G(x, y)-2(log (1/s))-G(x, w)G(y, w))f(y)dy

or f e L(o) respectively. Here G(x, y) is the Green’s unction o the
Laplacian in o. We compare the operators G and Ho. Put Q=H
-G,. We have the following

Lemma 1. The equations

(2.4)
A(Qf)(x)=O x
(Q,f)(x)=O x

and
(2.5) max Q,fl<_I(s) f

xa,
hold for any f e L2(w,). Here we put

(2.6) I(D- max (G(x, y)- G(y, w))2dy

We estimate the term I(e) as follows:
Lemma 2. The ineqlity

(2.7) I(e)Ce [log el
holds for suciently small e. Here C1 is a positive constant independ-
ent of e.

In the ollowing C, C... are constants independent of
Let A, be the annulus defined by

Then it is easy to see that there exists a positive constant q independ-
ent of e such that
(2.8) A,/
holds.

By Lemma 1, (2.8) and by the maximum principle or harmonic
unctions we can get the ollowing

Lemma . The inequality
(2.9) Qfl[()gC(log (1/e))-I(e)
holds for any suciently small e.
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Let H, be the bounded operator in L(/2) defined by

(2.10) (g.h)(x)= (G(x, y)-2z(log (1/s))-G(z, w)G(g, w))h()gg

for h e L(D).
Now we compare H and H. Le be an eigenfunetion of H

satisfying I11.( 1 and i(s) be is eigenvalue. hen
(. =i().
Le Z be the characteristic function

--. Nor he sake of simplicity, we pu
h,(x, y)=G(x, y)-2z(log (1/D)-G(x, w)G(y, w).

Then (2.11) is equivalent to the following systems of equations (2.12)
and (2.13)"

(2.12) [ h(x, y)p(y)dy+[ h,(x, y)p(y)dy=](e)(x) x e
J

(2.13) [ ,(,y),(y)dy+[ ,(, y)(y)dy:](D,(x) x e
d

Also we have
(2.14) Iixl2 1,

We can get.the ollowing

Lemma 4. The inequality

holds for any suciently smll
By Lemma 4 and (2.12), we get

(2.16)
We can also deduce the following inequality (2.17) from (2.13)"

There exists a positive constant 2" such that ](e)[>2* holds or any
sufficiently small e. Therefore by (2.16) and (2.17), we obtain
(2.18)
and
(2.19) + <> 1/2
or any sufficiently small

We now study the eigenvalues of G, H and H. In the first place
we compare the eigenvalues o H and G. It is easily seen that the
amily eH is a holomorphic perturbation family o seffadjoint
operators. Therefore we can apply the perturbation theory o eigen-
values in 1 to the pair H and G. And we have the following

Lemma 5. Let ’ be a fixed simple eigenvalue of G. Fix small
real neighbourhood U of ’. Then there exists a small positive con-
stant e such that the following property holds"

For any e e (0, e), there exists only one eigenvalue ’(e) of H wish
multiplicity 1 in U. And 2’(e) i8 represented as
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2’(D= 2’-- 2z(log (l/e))- 1(2’)2(W)2+ O((1og (l/D) -2)
when tends to O. Here (x) denotes the normalized eigenfunction of
G associated with ’.

In the next place, we compare the eigenvalues of G and H. Let
Ofi(D_fi(D... be the eigenvalue o the Laplacian in with the
Dirichlet condition on 3. Then by the theorem in 3 ], we have the
2ollowing

Lemma 6. For any fixed ], lim0 fi()=/. Therefore if [ is
simple, fi(e) is simple for any sufficiently small .

Since there is a correspondence between eigenvalue of the Laplacian
and the Green operator, we get the following rom Lemma 6.

Lemma 7. Let ’ be as above. Fix a suciently small real neigh-
bourhood V of 2’. Then there exists a constant 30 depending on V
such that the following holds"

In V, there exists only one eigenvalue 2"() of G for any fixed
e (0,0.
We see that 2"(e) is isolated and simple or small e and lim0 2"(e)

2’. Therefore by Lemma 3 and a slight modification of theorem in
134 o 2 ], we get the ollowing

Lemma 8. Let 2’ be as in Lemma 5. And "() be as above. Fix
a small real neighbourhood V1 of 2’. Then there exists a constant q

depending on VI such that the following hold" For any e e(0, e4),
"() e V. Fix an arbitrary e (0, q), then there exists only one eigen-
value 2"’() of H with multiplicity 1 in V. Moreover,

i’"(s)-- i"(s)1----- Cs(log (1/)) -1/

holds.
In the final step, we compare the eigenvalues of H, and H. For

this purpose, the ollowing is useful.
Lemma 9. Let B be a compact selfadjoint operator in a Hilbert

space . Suppose that the following holds"
(2.20) There exists e such that [lr] =1.
(2.21) There exists 2-0, and ]IB--2()I]e where e is a sufficiently
small positive constant.

Then there exists at least one eigenvalue 2 of B in the interval
((*)-- 2e, 2(*) /2D.

Since we have (2.18) and (2.19), we can apply Lemma 9 to H.
Then we get the following

Lemma 10. Let 2’() be the eigenvalue of H in Lemma 5. Let
V. be a fixed suIiciently small real neighbourhood of 2’. Then there
exists a constant e depending on V. such that the following holds"
For any fixed e (0, ), there exists at least one eigenvalue of H in the
subinterval (’()-- Ce, ’() + Ce) of V.
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We summarize Lemmas 5-10 and we use the relation of eigenvalues
o the Laplacian and the Green operators to get the following

Lemma 11. Fix ]. Assume that t is simple, then the relation

/() --/-- 2n(log (l/D)-l(w) / O((log (l/D) -)
holds when tends to zero.

It is easy to see that there exists a positive constant C1 inde-
pendent of e such that occtO, cw,/c holds or any sufficiently small e.

Since f(C)_l()_fi(/C)<O, and (CD-fi(/C)-- O((log (l/D) -)
when e tends to zero, then we get Theorem 1.
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