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§1. Introduction. Let 2 be a bounded domain in R™ with C*
boundary y and w be a fixed point in 2. For any sufficiently small
>0, let B, be the ball defined by

B.={zecQ;|z—w|<e}.
Let 2, be the bounded domain defined by 2,=2\B,. Then the bound-
ary of 2, consists of y and 9B.,.

Let 0> p,(e) >p(e)> - - - be the eigenvalues of the Laplacian with
the Dirichlet condition on y UoB,. Andlet 0>y, >p,> - - - be the eigen-
values of the Laplacian in £ with the Dirichlet condition on 7. We
arrange them repeatedly according to their multiplicities.

The main aim of this note is to give an asymptotic expression of
2,(e) when ¢ tends to zero.

We have the following

Theorem 1. Let 2 be a bounded domain tn R* with C* boundary
7. Fix j. Assume that the multiplicity of p, is equal to one, then
1.1) 1) — 1= — 2 (log (1/6))"g,(w) +O((log (1/£)"?)
holds when ¢ tends to zero. Here ¢, denotes the eigenfunction of the
Laplacian with the Dirichlet condition on y satisfying

L o (@)ydr=1.

For the case n=3, we have the following

Theorem 2. Let 2 be a bounded domain in R* with C° boundary
7. Fix j. Assume that the multiplicity of p, is equal to one, then
(1.2) (&) — py = —4mep,(w)* + O(**)
holds when ¢ tends to zero. Here ¢; denotes the normalized eigen-
function associated with y,.

In § 2 we give a rough sketch of proof of Theorem 1. To prove
Theorem 1 we employ the singular Hadamard variational formula for
the Green’s function of the Laplacian due to [ 5]. The details of this
paper will be given in [ 4].

§2. Outline of proof of Theorem 1. In this section we give
a rough sketch of proof of Theorem 1.

Let G(z, ¥) be the Green’s function on 2, that is, it satisfies the
following :
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4,Gx, y)=—o(x—1y) z,Yye

G@, Y)|,e, =0 yel.
Fix y e 2. Then it is well known that
2.1) lim (G(z, ¥)+@r) ' log |z —y)=C,< co.

z-y
Fix we 2. For any sufficiently small ¢>0, let v, be the bounded
domain defined by
o,={x c 2; G(x,w)<(2r) ' log (1/¢)}.
We put g,=2\a,.
Let G, and H, be a bounded operator in L*(w,) defined by

2.2) (Gsf)(x):J G.(x, v) fW)dy

and

2.3) (H,/)(@) =L (G(z, y)—2x(log (1/e))'G(x, WGy, w)) f(¥)dy

for f e L*w,) respectively. Here G,(z,y) is the Green’s function of the
Laplacian in o,. We compare the operators G, and H,. Put Q.,=H,
—G,. We have the following
Lemma 1. The equations
4@Q. /) (x)=0 rew
2.4 : :
@4 @QP@=0 wey

and
2.5) max 1Q.L1<IE) | S lloan)
hold for any f € L¥(w,). Here we put
1/2
2.6) 1) = max ( (G, 1) — Gy, w))Zdy) :

We estimate the term I(c) as follows:

Lemma 2. The inequality
2.7 I(e)<Cie|log el
holds for sufficiently small e. Here C, is a positive constant independ-
ent of e.

In the following C,, C,- - - are constants independent of e.

Let A, , be the annulus defined by

A, ;={xeR*; ie—w|<r}

Then it is easy to see that there exists a positive constant ¢ independ-
ent of ¢ such that
2.8) A, . Do,
holds.

By Lemma 1, (2.8) and by the maximum principle for harmonic
functions we can get the following

Lemma 3. The inequality
2.9 Q. llz2un < Co(log (1/)) () || f ]| zacuey
holds for any sufficiently small e.
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Let H . be the bounded operator in L*(Q) defined by
(2100 (A ,h)(x)=jg (G(z, ) —2xn(log (1/))"'G(x, w)G(y, w)h(y)dy

for h e L¥(Q).

Now we compare H, and ﬁ,. Let 4 be an eigenfunction of a,
satisfying ||v||..c0,=1 and i(e) be its eigenvalue. Then
2.11) Hop=2e)y.
Let y. be the characteristic function of w,. We put J,=y. 4 and =+
—4r;.  For the sake of simplicity, we put

h(z, ) =Gz, y)—2r(log (1/¢))'G(x, w)G(Y, w).

Then (2.11) is equivalent to the following systems of equations (2.12)
and (2.13):

2.12) j e, D@y + j @ PRy =10n@ e,
(2.13) . h(x, y)drx(y)dy+L k@, Wy dy = A () zep.

Also we have

(2.14) “‘!’1”2149(0;;)+”w2“2149(ﬂz):1'
We can get the following
Lemma 4. The inequality

@.15) (J.( e, DAY d2) < Ce [ uln

holds for any sufficiently small .
By Lemma 4 and (2.12), we get
2.16) L o= 2@ 3o O™ [y
We can also deduce the following inequality (2.17) from (2.13):
2.17) 1 2@ V2l a0 < Ce"* [ ¥r1l|zau +Cie Hog e| [ ¥relzscs.-
There exists a positive constant 1* such that [1(e)|>4* holds for any
sufficiently small e. Therefore by (2.16) and (2.17), we obtain

2.18) I (H,— 2 2o < Cst 1 llzsan)
and ‘
2.19) V1 |fzacuny =1/2

for any sufficiently small .

We now study the eigenvalues of G, H.and H,. Inthe first place
we compare the eigenvalues of H, and G. It is easily seen that the
family e>H, is a holomorphic perturbation family of selfadjoint
operators. Therefore we can apply the perturbation theory of eigen-
values in [ 1] to the pair H, and G. And we have the following

Lemma 5. Let X be a fixed simple eigenvalue of G. Fix small
real neighbourhood U of X. Then there exists a small positive con-
stant e, such that the following property holds:

For any ¢ € (0,¢,), there exists only one eigenvalue A'(¢) of H, with
maultiplicity 1 in U. And 2(e) is represented as
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X (@) =1—2z(log (1/))' X YV'e(w)*+ O((log (1/¢))7*)
when ¢ tends to 0. Here o(x) denotes the normalized eigenfunction of
G associated with 2.

In the next place, we compare the eigenvalues of G, and H,. Let
0> g,(e)>fi,(e)- - - be the eigenvalue of the Laplacian in o, with the
Dirichlet condition on dw,. Then by the theorem in [ 3], we have the
following

Lemma 6. For any fixed j, lim,_, g(e)=p;. Therefore if pu; is
simple, (i) is simple for any sufficiently small .

Since there is a correspondence between eigenvalue of the Laplacian
and the Green operator, we get the following from Lemma 6.

Lemma 7. Let 2 beasabove. Fiza sufficiently small real neigh-
bourhood V of 2. Then there exists a constant ¢,>>0 depending on V
such that the following holds :

In 'V, there exists only one eigenvalue 2’'(e) of G, for any fixed
c€(0,¢,).

We see that 2”7(¢) is isolated and simple for small ¢ and lim,_, 27(¢)
=2. Therefore by Lemma 3 and a slight modification of theorem in
§ 134 of [ 21, we get the following

Lemma 8. Let ¥ be asin Lemma 5. And 2’(e) be as above. Fix
a small real neighbourhood V, of 2. Then there exists a constant e,
depending on V, such that the following hold: For any ¢¢c(0,e,),
X)) eV, Fixan arbitrary e (0,¢,), then there exists only one eigen-
value 1) of H, with multiplicity 1 in V,. Moreover,

[77(e) — 2" (e)| < Ceelog (1/)) 7'
holds.

In the final step, we compare the eigenvalues of H, and H,. For
this purpose, the following is useful.

Lemma 9. Let B be a compact selfadjoint operator in a Hilbert
space . Suppose that the following holds:

(2.20) There exists ne O such that ||p||=1.
(2.21) There exists 2¥x0, and | By—21*y||<e where ¢ is a sufficiently
small positive constant.

Then there exists at least one eigenvalue 1 of B in the interval
(A® —2¢, 29 +2¢).

Since we have (2.18) and (2.19), we can apply Lemma 9 to H..
Then we get the following

Lemma 10. Let 7(c) be the eigenvalue of H, in Lemma 5. Let
V, be a fived sufficiently small real neighbourhood of 2. Then there
exists a constant e depending on V, such that the following holds:
For any fized ¢ € (0, &), there exists at least one eigenvalue of H, in the
subinterval (X (e)—Cqe, V() +Ce) of V,.
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We summarize Lemmas 5-10 and we use the relation of eigenvalues
of the Laplacian and the Green operators to get the following

Lemma 11. Fix j. Assume that p, is simple, then the relation

() = pty—2x(log (1/6)) "', (w)* + O((log (1/))%)
holds when ¢ tends to zero.

It is easy to see that there exists a positive constant C>1 inde-
pendent of ¢ such that w,C2.Cw,, holds for any sufficiently small .
Since 7,(Ce)<py(e)<ae/C)<0, and 5 (Ce)—fi(e/C) = O((log (1/¢))7%)
when ¢ tends to zero, then we get Theorem 1.
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