69. A Note on the Tate Conjecture for K3 Surfaces

By Takayuki OdA
Hokkaido University
(Communicated by Kunihiko Kodaira, m. J. A., June 12, 1980)

This note discusses the openness of the image of the Galois group in the second ℓ-adic cohomology of a $K 3$ surface with large Picard number defined over an algebraic number field. Especially, we prove the Tate conjecture for a $K 3$ surface, whose Picard number is 20 or 19.

Let X be a smooth projective geometrically irreducible surface defined over an algebraic number field k, which satisfies the conditions:

$$
\Omega_{X / k}^{2}=\mathcal{O}_{X} \quad \text { and } \quad H^{1}\left(X, \mathcal{O}_{X}\right)=0
$$

Such a surface is called a $K 3$ surface ([12]). The Picard number ρ of X is defined by

$$
\rho=\operatorname{dim}_{\boldsymbol{Q}} N S(X \otimes \bar{k}) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}
$$

where \bar{k} is the algebraic closure of k, and $N S(X \otimes \bar{k})$ is the Néron-Severi group of $X \otimes \bar{k}$. For any embedding of the field $\sigma: k \hookrightarrow C$, put

$$
\rho_{\sigma}=\operatorname{dim}_{\boldsymbol{Q}} N S\left(X \otimes_{k, \sigma} C\right) \otimes_{Z} \boldsymbol{Q} .
$$

Then the equality $\rho=\rho_{\sigma}$ holds.
The Betti numbers of X are given by

$$
b_{0}=b_{4}=1, \quad b_{1}=b_{3}=0, \quad b_{2}=22
$$

Put $\rho_{k}=\operatorname{dim}_{\boldsymbol{Q}} N S(X) \otimes_{Z} \boldsymbol{Q}$, and assume that $\rho_{k}=\rho$. We call $\lambda=b_{2}-\rho$ the Lefschetz number of X, which is the number of transcendental cycles independent modulo algebraic cycles.

Now let us recall the Brauer group $\operatorname{Br}(X \otimes \bar{k})$ of $X \otimes \bar{k}$. By Grothendieck [1], it is known to be a torsion group, and the Tate module $T_{\ell}(\operatorname{Br}(X \otimes \bar{k}))$ is given by the exact sequence of $\operatorname{Gal}(\bar{k} / k)$-modules

$$
0 \longrightarrow N S(X) \otimes \boldsymbol{Z}_{\ell} \longrightarrow H_{\mathrm{et}}^{2}\left(X \otimes \bar{k}, Z_{\ell}[1]\right) \longrightarrow T_{\ell}(\mathrm{Br}(X \otimes \bar{k})) \longrightarrow 0
$$

Here $Z_{\ell}[1]$ is the Tate twist.
Put $V_{\ell}=T_{\ell} \otimes_{Z_{\ell}} \boldsymbol{Q}_{\ell}$. The intersection form on $H_{\text {ett }}^{2}\left(X \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right)$ is a symmetric bilinear form with values in $\boldsymbol{Q}_{\ell}[-2]$. We denote by $V_{\ell}(T)$ the orthogonal complement of $N S(X) \otimes_{Z} \boldsymbol{Q}_{\theta}[-1]$. Then the restriction of the intersection form to $V_{\ell}(T)$ defines a non-degenerate bilinear form with values in $\boldsymbol{Q}_{\ell}[-2]$, and the above exact sequence induces an isomorphism of the ℓ-adic representations of Gal (\bar{k} / k) :

$$
V_{\ell}(T)[1] \sim V_{\ell}(\mathrm{Br}(X \otimes \bar{k})) .
$$

Let us consider the ℓ-adic representation

$$
\rho_{T, \ell}: \operatorname{Gal}(\bar{k} / k) \longrightarrow \operatorname{Aut}\left(V_{\ell}(T)\right)
$$

By definition, $\lambda=b_{2}-\rho=\operatorname{dim}_{Q_{\ell}} V_{\ell}(T)$. Since the characteristic of k is
zero, by Hodge theory and by the Lefschetz criterion of algebraic cycles, we have $\lambda \geqq 2$ i.e. $\rho \leqq 20$.

To investigate $\rho_{T, \ell}$, we need the Kuga-Satake abelian varieties attached to $K 3$ surfaces.

Choose an embedding $\sigma: k \longrightarrow C$. Then we denote by $H_{\sigma}^{2}(X, Z)$ the second Betti cohomology group of the complex analytic surface $\left(X \otimes_{k, \sigma} C\right)^{a n}$. Fix an ample invertible sheaf L on X, and let $\Lambda \in H_{\sigma}^{2}(X, Z)$ be the Chern class of L. Let $P_{\sigma}(X)$ be the orthogonal complement of $Z \Lambda$ in $H_{\sigma}^{2}(X, Z)$, with respect to the intersection from on $H_{\sigma}^{2}(X, Z)$. Let $C_{+}\left(P_{o}(X)\right)$ be the even Clifford algebra associated with the bilinear form on $P_{\sigma}(X)$, which is the restriction of the intersection form. Then Kuga-Satake [2] defined a structure of an abelian variety of dimension 2^{19} on the real torus $C_{+}\left(P_{\sigma}(X)\right) \otimes_{Z} R / C_{+}\left(P_{\sigma}(X)\right)$, which we denote by $A_{\sigma}(X, L)$ or simply by $A_{\sigma}(X)$.

In the proof of [4], Deligne proved the following results:
Theorem (cf. Proposition (6.5) of [4]). Let X be a K3 surface over k. Then the abelian variety $A_{o}(X)$ has a model A defined over a finite extension k^{\prime} of k. Moreover there are a Z-algebra $C=C_{+}\left(P_{o}(X)\right)$, an injection of algebras: $C \rightarrow \operatorname{End}_{k^{\prime}}(A)$, and an isomorphism of ℓ-adic representations of Gal (\bar{k} / k^{\prime})

$$
C_{+}\left(P\left(X, \boldsymbol{Q}_{\ell}\right)[1]\right) \xrightarrow{\sim} \operatorname{End}_{C}\left(H_{\mathrm{e}_{\mathrm{t}}}^{1}\left(A \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right)\right) .
$$

Here $P\left(X, \boldsymbol{Q}_{\ell}\right)$ is the orthogonal complement of $\boldsymbol{Z}_{\ell} \Lambda$ in $H_{\mathrm{ett}^{2}}\left(X \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right)$ with respect to ℓ-adic intersection form, and $C_{+}\left(P\left(X, \boldsymbol{Q}_{\ell}\right)[1]\right)$ is the even Clifford algebra of $P\left(X, \boldsymbol{Q}_{\ell}\right)[1]$.

Let S be the image of $N S\left(X \otimes_{k, \sigma} C\right)$ in $H_{\sigma}^{2}(X, Z)$, and let T be the orthogonal complement of S in $H_{o}^{2}(X, Z)$ with respect to the intersection form on $H_{\sigma}^{2}(X, Z)$. Clearly $\operatorname{rank}_{Z} T=\lambda$. Recall that the intersection form on $H_{o}^{2}(X, Z)$ has the signature (3+,19-), and that the restriction of this form to S has the signature ($1+,(\rho-1)-$) by the index theorem of Hodge (cf. [12]). Therefore the restriction to T of the intersection form defines a non-degenerated symmetric bilinear form of the signature $(2+,(\lambda-2)-)$ on $T . T$ is naturally equipped with the homogeneous Hodge structure of type $\{(2,0),(1,1),(0,2)\}$. And if we put $T_{C}=T \otimes_{Z} C$, we have

$$
\operatorname{dim}_{C} T_{c}^{2,0}=\operatorname{dim}_{C} T_{c}^{0,2^{2}}=1 \quad \text { and } \quad \operatorname{dim}_{C} T_{c}^{1,1}=\lambda-2
$$

By Satake [3], or by [4], we can define a structure of an abelian variety of dimension $2^{\lambda-2}$ on the real torus $C_{+}(T) \otimes_{Z} R / C_{+}(T)$. Here $C_{+}(T)$ is the even Clifford algebra associated with the intersection form on T. We denote this abelian variety by $A_{\sigma}^{T}(X)$.

Note that, as shown in the end of [3], the abelian variety $A_{o}(X)$ is isogenous to the product of $2^{\rho-1}$ copies of $A_{\sigma}^{T}(X)$, and that the endomorphism algebra End $\left(A_{\sigma}^{T}(X)\right) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$ is isomorphic to $C_{+}(T) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$. Since
$A_{\sigma}(X)$ is defined over an algebraic number field $k^{\prime}, A_{\sigma}^{T}(X)$ is also defined over an algebraic number field $k^{\prime \prime}$, which is a finite extension of k^{\prime}.

Remark. If we consider the totality of $K 3$ surfaces with a fixed sublattice S of algebraic cycles in $H_{\sigma}^{2}(X, Z)$, in place of all polarized $K 3$ surfaces, the methods of Deligne [4] are applicable to $A_{\sigma}^{T}(X)$, too. So we can obtain an analogy of Theorem for $A_{\sigma}^{T}(X)$ directly.
(A) The Case $\rho=20 . \quad \lambda=2$ in this case. Therefore, $A_{\sigma}^{T}(X)$ is one dimensional abelian variety, and $C_{+}(T) \otimes_{Z} Q$ is an imaginary quadratic field. Accordingly, $A_{\sigma}^{T}(X)$ is an elliptic curve with complex multiplication. For abbreviation of notation, we denote this elliptic curve by E. E is defined over a certain algebraic number field k^{\prime} which is a finite extension of k. There is a natural monomorphism of Gal ($\left.\bar{k} / k^{\prime}\right)$ modules:

$$
C_{+}(T) \otimes_{Z} \boldsymbol{Q}_{\ell}[-1] \longrightarrow H_{\dot{\text { ext }}}^{1}\left(E \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right) \otimes H_{\text {ét }}^{1}\left(E \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right)
$$

Denote the cokernel of this monomorphism by $V_{\ell}\left(T^{\prime}\right)$. Then, by Theorem, we have an isomorphism of Gal (\bar{k}, k^{\prime})-modules

$$
V_{\ell}(T) \xrightarrow{\sim} V_{\ell}\left(T^{\prime}\right)
$$

Hence the restriction of the representation $\rho_{T, \ell}$ to $\mathrm{Gal}\left(\bar{k} / k^{\prime}\right)$ is an abelian ℓ-adic representation, and for any finite extension $k^{\prime \prime}$ of k^{\prime}, the invariant part $V_{\ell}(T)[1]^{\operatorname{Gal}\left(\bar{k} / k^{\prime \prime}\right)}$ of the twist of $V_{\ell}(T)$ is reduced to zero, as conjectured by Tate [5].

Remark. Another method is given in the section 6 of ShiodaInose [6], which depends on the more precise study of $K 3$ surfaces with $\rho=20$.

Remark. We can obtain a more precise result. Namely we can show that $\rho_{T, \ell}$ is an abelian ℓ-adic representation of Gal (\bar{k} / k). It follows from the intersection form on rank $2 \boldsymbol{Q}_{\ell}$-module $V_{\ell}(T)$, and from the comparison theorem of Artin [7].
(B) The Case $\rho=19$. Let S be the sublattice $H_{\sigma}^{2}(X, Z)$ generated by the algebraic cycles on X. The restriction of the intersection form to S defines a symmetric bilinear form of signature ($1+, 18-$). We denote by Δ_{S} the determinant of the matrix representing this bilinear form. Δ_{S} defines an element of $Q^{*} /\left(Q^{*}\right)^{2}$. Two cases occur, according as Δ_{S} is a square of a rational number or not.
(B.1) The Case. $\Delta_{S}=s q u a r e$, i.e. $\Delta_{S} \in\left(Q^{*}\right)^{2}$. By the Poincaré duality, the intersection form is unimodular, and its signature is $(3+, 19-)$. Therefore we have

$$
\Delta_{S} \cdot \Delta_{T} \equiv-1 \quad \bmod \left(Q^{*}\right)^{2}
$$

In this case the quaternion algebra $C_{+}(T) \otimes_{Z} \boldsymbol{Q}$ over \boldsymbol{Q} is isomorphic to the matrix algebra $M_{2}(Q)$. Thus, by Satake [3], $A_{\sigma}^{T}(X)$ is isogenous to the product $E \times E$ of an elliptic curve E without complex multiplica-
tion.*) E is defined over a certain finite extension k^{\prime} of k. By Theorem, we have an isomorphism of Gal (\bar{k} / k^{\prime})-modules:

$$
V_{\ell}(T) \xrightarrow{\sim} \operatorname{Symm}^{2} H_{\mathrm{ett}^{1}}^{1}\left(E \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right) .
$$

Here Symm 2 means the symmetric tensor product of degree 2. By the results of Serre [8], [9], for any finite extension $k^{\prime \prime}$ of k^{\prime}, the invariant part $V_{\ell}(T)[1]^{\text {Gal }\left(\bar{k} / k^{\prime \prime}\right)}$ is zero. Thus we have verified the Tate conjecture.
(B.2) The Case $\Delta_{S} \oplus\left(\boldsymbol{Q}^{*}\right)^{2}$. In this case, the quaternion algebra $C_{+}(T) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$ is an indefinite division algebra. Thus, by [3], $A_{\sigma}^{T}(X)$ is a simple abelian variety of dimension two. It is known that the rank of the Néron-Severi group $A_{\sigma}^{T}(X)$ is three. By Theorem, $A_{\sigma}^{T}(X)$ has a model A defined over a certain finite extension k^{\prime} of k, and we have an isomorphism of Gal $\left(\bar{k} / k^{\prime}\right)$:

$$
V_{\ell}(T) \xrightarrow{\sim} H_{\mathrm{e}_{\mathrm{t}}}^{2}\left(A \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right) /\left(N S(A \otimes \bar{k}) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}[-1]\right) .
$$

By the results of Ohta [10] on the ℓ-adic representation on $H_{\dot{e t t}}^{1}\left(A \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right)$ of a so-called "false elliptic curve" A, we can readily check that the invariant part $V_{\ell}(T)[1]^{\operatorname{dal}\left(\bar{k} / k^{\prime \prime}\right)}$ is reduced to zero for any finite extension $k^{\prime \prime}$ of k. Thus the Tate conjecture is true in this case too.
(C) A few words for the case $\rho=18$. This case is also divided into two cases, according as Δ_{T} is a square or not.
(C.1) When Δ_{T} is a square of a rational number, $A_{\sigma}^{T}(X)$ is isogenous to the product $E_{1} \times E_{1} \times E_{2} \times E_{2}$ by [3]. Here E_{1} and E_{2} are nonisogenous two elliptic curves. For a certain finite extension k^{\prime} of k containing the fields of definition of E_{1} and E_{2}, we have an isomorphism :

$$
V_{\ell}(T) \xrightarrow{\sim} H_{\dot{e t}}^{1}\left(E_{1} \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right) \otimes H_{e_{\mathrm{et}}}^{1}\left(E_{2} \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right)
$$

of the ℓ-adic representations of $\mathrm{Gal}\left(\bar{k} / k^{\prime}\right)$.
Thus the validity of the Tate conjecture in this case is equivalent to the following :

For any finite extension $k^{\prime \prime}$ of k^{\prime}, the Gal ($\left.\bar{k} / k^{\prime \prime}\right)$-module $H_{\dot{\text { et }}}^{1}\left(E_{1} \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right)$ is not isomorphic to $H_{\hat{e}_{t}}^{1}\left(E_{2} \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right)$.

This seems to be still an open problem for general E_{1}, E_{2}. See the end of [9].
(C.2) When Δ_{T} is not square, $\boldsymbol{Q}\left(\sqrt{\Delta_{T}}\right)$ is a real quadratic field, because Δ_{T} is positive. In this case, $C_{+}(T) \otimes_{Z} \boldsymbol{Q}$ is a matrix algebra $M_{2}\left(\boldsymbol{Q}\left(\sqrt{\Delta_{T}}\right)\right)$. By [3], $A_{\sigma}^{T}(X)$ is isogenous to the product $A \times A$ of a two dimensional abelian variety A with real multiplication $\boldsymbol{Q}\left(\sqrt{\Delta_{T}}\right)$. We can find a sufficient large finite extension k^{\prime} of k, such that A is defined over k^{\prime} and such that the rank of $N S\left(A \otimes k^{\prime}\right)$ is equal to 2 . Hence Theorem implies an isomorphism:

$$
V_{\ell}(T) \longrightarrow H_{\hat{e}_{\mathrm{t}}^{2}}^{2}\left(A \otimes \bar{k}, \boldsymbol{Q}_{\ell}\right) / N S\left(A \otimes k^{\prime}\right) \otimes \boldsymbol{Q}_{\ell}[-1]
$$

*) The fact that $A_{o}(X)$ is isogenous to the product of 2^{19} copies of an elliptic curve was suggested by Kuga several years ago. I would like to thank him.
of the ℓ-adic representations of $\operatorname{Gal}\left(\bar{k} / k^{\prime}\right)$. Unfortunately the results of Ribet [11] is insufficient to assure the Tate conjecture without irrelevant conditions.

We can treat the case $\rho \leqq 17$ similarly. But for such case, it seems that the necessary results for ℓ-adic representation of the corresponding abelian varieties is not known.

As a generalization of [6], we can expect the following fact (open problem).

For any K3 surface X with $\rho \geqq 18$, or with $\rho=17$ and $\Delta_{S} \in\left(Q^{*}\right)^{2}$, there exist an abelian variety A of dimension two and an algebraic correspondence ψ of X to the Kummer surface $\operatorname{Km}(A)$, such that ψ induces an isomorphism of $V_{\ell}(\operatorname{Br}(X \otimes \bar{k}))$ to $V_{\ell}(\mathrm{Br}(A \otimes \bar{k}))$ and an isomorphism (with Hodge structure of) $T \otimes_{Z} \boldsymbol{Q}$ to \{the module of transcendental cycles of $A\} \otimes_{Z} \boldsymbol{Q}$.

References

[1] Grothendieck, A.: Le groupe de Brauer III. Dix exposés sur la cohomologie des schémas. North Holland, Amsterdam, pp. 88-188 (1968).
[2] Kuga, M., and Satake, I.: Abelian varieties attached to polarized $K 3$ surfaces. Math. Ann., 169, 239-242 (1967).
[3] Satake, I.: Clifford algebras and families of abelian varieties. Nagoya Math. J., 27, 435-446 (1966) .
[4] Deligne, P.: La conjecture de Weil pour les surfaces K3. Invent. math., 15, 206-226 (1972).
[5] Tate, J.: Algebraic cycles and poles of zeta functions. Arithmetic Algebraic Geometry. Harper and Row, New York (1965).
[6] Shioda, T., and Inose, H.: On singular K3 surfaces. Complex Analysis and Algebraic Geometry. Iwanami-Shoten Publisher and Cambridge Univ. Press, pp. 119-136 (1977).
[7] Artin, M.: Comparaison avec la cohomologie classique. Exposé XI. Théorie des Topos et Cohomologie Etale des Schémas (SGA 4), t. 3, pp. 64-78. Lect. Notes in Math., vol. 305, Springer (1973).
[8] Serre, J.-P.: Abelian ℓ-adic Representation and Elliptic Curves. Benjamin, New York (1968).
[9] -: Propriétés galoisiennes des points d'ordre fini des courbes elliptique. Invent. Math., 15, 259-331 (1972).
[10] Ohta, M.: On ℓ-adic representations of Galois groups obtained from certain two-dimensional abelian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA, 21, 299-308 (1974).
[11] Ribet, K. A.: Galois action on division points of abelian varieties with real multiplication. Amer. J. Math., 98(3), 751-804 (1976).
[12] Shafarevitch, I. R., Averbuch, B. G., Vainberg, Ju. R., Juitchenko, A. B., Manin, Ju. I., Moishezon, B. G., Tjurina, G. N., and Tjurin, A. N.: Algebraic surfaces. Trudy Math. Inst. Steklov, 75 (1965).

