66. A Note on the Large Sieve. IV

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated Kunihiko Kodaira, m. J. A., June 12, 1980)

1. The purpose of the present note is to show a hybrid of the multiplicative large sieve and the Rosser-Iwaniec linear sieve.

We retain most of the notations of our preceding paper [6], and in addition we introduce the following conventions: Let χ be a Dirichlet character, and put

$$
S(A, z, \chi)=\sum_{\substack{n \in A \\(n, P(z))=1}} \chi(n) \alpha_{n},
$$

where a_{n} are arbitrary complex numbers. We put also, for $\chi(\bmod q)$,

$$
R_{a}(\chi)=\sum_{\substack{n \in A \\ n=0(\bmod d)}} \chi(n)-\varepsilon_{\chi}|\chi(d)| \frac{\delta(d)}{d} \prod_{p \mid q}\left(1-\frac{\delta(p)}{p}\right) X
$$

in which ε_{χ} is 1 if χ is principal, and 0 otherwise.
Then our hybrid sieve is
Theorem 1. Let Δ be a finite set of primitive Dirichlet characters, and let M, N be arbitrary but $M N \geq z^{2}$. Then we have, as $z \rightarrow \infty$,

$$
\begin{aligned}
& \sum_{x \in A}|S(A, z, \chi)|^{2} \\
& \quad \leq\left[X V(z)\left\{F\left(\frac{\log M N}{\log z}\right)+o(1)\right\}+O(E)\right] \sum_{\substack{n \in A \\
(n, P(z))=1}}\left|a_{n}\right|^{2}
\end{aligned}
$$

where

$$
E=\max _{\alpha, \beta} \max _{\psi \in \Delta} \sum_{\chi \in \Delta}\left|\sum_{\substack{m<M \\ n<N}} \alpha_{m} \beta_{n} R_{m n}(\chi \bar{\psi})\right|,
$$

$\left\{\alpha_{m}\right\},\left\{\beta_{n}\right\}$ being variable vectors such that $\left|\alpha_{m}\right| \leq 1,\left|\beta_{n}\right| \leq 1$.
The proof which will be given in [7] is a direct application of Iwaniec's important idea [2] to the dual form

$$
\sum_{\substack{n \in A \\(n, P(z))=1}}\left|\sum_{\chi \in A} \chi(n) b_{\chi}\right|^{2}
$$

where b_{x} are arbitrary complex numbers.
2. To illustrate the power of the above theorem we prove briefly the following result of the Brun-Tichmarsh type:

Theorem 2. If $x \geq k^{2} Q^{4} \rightarrow \infty$, then we have

$$
\begin{aligned}
& \sum_{(q, Q \in)} \sum_{(q, k)=1} \sum_{x \bmod q)}^{*} \sum_{p \equiv l} \sum_{p<x}^{\bmod k)} \\
& \quad \leq(2+o(1)) x\left(\left.\varphi(k)\right|^{2}\right. \\
& \left.\quad \leq\left(\frac{x}{Q \sqrt{k}}\right)\right)^{-1} \pi(x ; k, l)
\end{aligned}
$$

where \sum^{*} denotes a sum over primitive characters.

This is a large sieve extension of a result of Iwaniec [2, Theorem 3], and at the same time an improvement upon a result of [4] the first paper of this series (see also [5]).

For the proof we set in Theorem $1 A=\{n ; n \equiv l(\bmod k), n<x\}$, $P=\{p ; p \nmid k\}, z=(M N)^{1 / 3}, \Delta=\{\chi$ primitive $(\bmod q) ; q \leq Q,(q, k)=1\}$, and $a_{n}=1$ if n is a prime and $a_{n}=0$ otherwise. Then $\delta(d)=1$ for $d \mid P(z)$, and $X=x / k$. So our problem is now the estimation of E. For this sake we put

$$
A(s, \chi)=\sum_{m<M} \alpha_{m} \chi(m) m^{-s}, \quad B(s, \chi)=\sum_{n<N} \beta_{n} \chi(n) n^{-s} .
$$

Using Perron's inversion formula we get, for $\chi(\bmod q)$ and $T \geq 1$,

$$
\begin{aligned}
& \sum_{\substack{m<M \\
n<N}} \alpha_{m} \beta_{n} R_{m n}(\chi) \\
&= \frac{1}{2 \pi i \varphi(k)} \sum_{\xi(\bmod k)} \bar{\xi}(l) \int_{1 / 2-i T}^{1 / 2+i T} L(s, \chi \xi) A(s, \chi \xi) B(s, \chi \xi) \frac{x^{s}}{s} d s \\
&+O\left\{\left(\left(\frac{x M N Q k}{T}\right)^{1 / 2}+\frac{x}{T}\right)(\log x M N Q k)^{3}\right\} .
\end{aligned}
$$

Hence setting $T=(x M N k Q)^{c}$ with a sufficiently large c we have

$$
\begin{aligned}
E \ll & \frac{x^{1 / 2}}{\varphi(k)}(\log x M N Q k) \max _{\alpha, \beta} \max _{\psi \in A} \max _{1 \leq U \leq T} U^{-1} \\
& \times\left\{\int_{\xi(\bmod k)} \sum_{x \in A}|L(s, \chi \psi \xi)|^{4}|d s|\right\}^{1 / 4}\left\{\int_{\xi(\bmod } \sum_{k)} \sum_{x \in A}|A(s, \chi \psi \xi)|^{4}|d s|\right\}^{1 / 4} \\
& \times\left\{\int_{\xi(\bmod k)} \sum_{x \in A}|B(s, \chi \psi \xi)|^{2}|d s|\right\}^{1 / 2},
\end{aligned}
$$

where the integrations are all along the straight line $[1 / 2-i U, 1 / 2+i U]$. By a simple application of the multiplicative large sieve we see that the second and the third integrals are, respectively,

$$
O\left\{\left(M^{2}+k Q^{2} U\right) \log ^{3} M\right\} \quad \text { and } \quad O\left\{\left(N+k Q^{2} U\right) \log N\right\} .
$$

On the other hand the method of Ramachandra (cf. [1, pp. 80-81]) yields

$$
\int \sum_{\xi(\bmod } \sum_{k)}|L(s, \chi \psi \xi)|^{4}|d s| \ll\left(k Q^{2} U\right)^{1+e} .
$$

Thus

$$
E \ll \frac{1}{\varphi(k)}(x Q \sqrt{k})^{1 / 2}\left(M^{2}+k Q^{2}\right)^{1 / 4}\left(N+k Q^{2}\right)^{1 / 2}(x M N Q k)^{\varepsilon} .
$$

This implies that an optimal choice of M, N is given by $N=M^{2} \geq k Q^{2}$, $M=(x /(\sqrt{k} Q))^{1 / 3-\varepsilon}$. And after some additional considerations about the primes ≥ 2 we conclude the proof of Theorem 2.

It should be remarked that Iwaniec [3] has given various methods to deal with E when Δ consists of only the trivial character, and most of his arguments may be carried into the more general situation of the present note. Thus in particular Theorem 2 is by no means the best result deducible from Theorem 1; the detailed discussions will be given in [7].

Acknowledgement. The present author is very much indebted to his friend Dr. H. Iwaniec for sending him the important manuscripts [2] and [3].

References

[1] E. Bombieri: Le grand crible dans la théorie analytique des nombres. Soc. Math. France, Astérisque, 18 (1974).
[2] H. Iwaniec: A new form of the error term in the linear sieve (to appear in Acta Arih.).
[3] -: On the Brun-Titchmarsh theorem (unpublished).
[4] Y. Motohashi: A note on the large sieve. Proc. Japan Acad., 53, 17-19 (1977).
[5] ——: Large sieve extensions of the Brun-Titchmarsh theorem (to appear in the Turán volume of Acta Math. Hung.).
[6] -: On the linear sieve. I. Proc. Japan Acad., 56A, 285-287 (1980).
[7] -: Lectures on sieve methods and prime number theorems (to appear).

