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1. Introduction. The purpose of this. note is. to study Hamiltn-
ians associated with the six equations, of Painlev, and r-functions
related to Hamiltonians. The Painlev equations are given by the fol-
lowing table"

Piv ,,- (2,y. +3+4t.+2(t-_a)+ ]2

(- 1 )(ZY-I’+Pv 2"= +
2-- I t (]--1)t (+)+i] + (]+--II)

1(1 1..+ 1=- 7+ I--1 i 1 Y+ t--1 i--t

+ ](]-- 1)(]-- t) [a+ t
t(t ly -+ t-- 1 t(t-- 1) ]

(-- ly + (-- t) J’
where a, , . and denote complex constants.

These equations are equivalent to the Hamiltonian systems
d2 aH
dt @(1) d/= H
dt

with a polynomial or rational Hamiltonian H-H(t 2,/). Historically
his. fact was first remarked by J. Malmquist, in his paper studying
polynomial systems of differential equations, without movable branch
points and some explicit forms, of polynomial Hamiltonians were given

for the Painlev equations except for the third one ([1], p. 86). Re-
cently, the author showed that the Painlev equations are equivalent
to systems, of the form (1) and gave each system a geometric inter-
pretation ([2], p. 47).

2. Isomonodromic deformations. Consider firstly the linear
differential equation
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(2)

depending on a parameter t. We suppose that (2) is. of the Fuchsian
type with the five singularities, x=0, 1, t, 2 and c. The Riemannian
scheme of (2) is given by

The Fuchsian relation for (2) reads
( 3 )
Now we study the isomonodromic deformation of (2) under the follow-
ing assumption" (A) x= 2 is not a logarithmic singular point. View-
ing t as, a deformation parameter, we obtain

Proposition 1. Under the assumption (A), the isomonodromic
deformation is governed by a Hamiltonian system of the form (1) with
the Hamiltonian
( 4 ) H=-Rs p.(x, t),

and the conjugate canonical variable
( 5 ) /=Rs p(x, t).

The system thus obtained is equivalent to the eqtion Pw.
It ollows rom (A) that the Hamiltonian H is written as rational
unction in and Z. Moreover, we obtain

Corollary. If the vanish for A=0, 1, t or , then the Hamilton-
ian is a polynomial in and .. Polynomial hamiltonians. The result o the Proposition 1 is
valid also or the other Painlev equations. The isomonodromic
deormation o linear equation of the orm (2) determines, the poly-
nomial Hamiltonian associated with each of the equations. Here we
give them below"

Table (H):

HI --22-2t

t

r2HII [z Z -{2t+(280+1)-20t}z+2(0+0)t2]

Hv 2Z-{2+ 2t2+ 2O0}Z+
[(-)z-{0(-)+(-1)H

1+{(oo+o)-o}(
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1 [I(-- 1)(/,-- t)H
t(t-- 1)

{0o(,,l-- 1)(2-- t) + 02(,,l-- t) + (Ot- 1)2(2-- 1)}#

+ {(Oo+ O, + O,- 1)-0}(2-- t)].

Here the constants, in Hm...HI are connected to , , F, of the
equations as follows"
Hm a=-4W0, =4V0(O0+l), 7=
Hv a 0+2t+ 1, 20,
Hv =2 --o, =--(,+1),

Hv =0,
Remark 1.

r=_
2 2 ’

By taking into consideration the first equation o (1),
the canonical variable/ is a rational function in 2 and Z. Thus. the
Hamiltonians are written as rational functions of 2 and its. first deriva-
tive.

4. v.functions related to the Hamiltonians. Let H(t;2,/) be
the Hamiltonian associated with the equation P(J I. IV) and let
be the set of fixed critical points of P and set B=P(C)--. Then
any solutions. (2(t),/(t)) of System (1) is meromorphic on the universal
covering surface of B and so is. the function H(t; (t),/(t)).

Now we state the theorem:
Theorem. Let Hj be the Hamiltonian associated with Pj, given

in the Table (H). Then the function
(,6) r(t)=exp H(s; 2(s),/(s))ds
is holomorphic on , and has only simple zeros on .
The function rz(t) defined by (6) is. called r-function related to the
Hamiltonian H. This theorem is proved by the use of Laurent ex-
pansions, of (2(t),/(t)) around poles.

5. Examples. In [3], the scaling function F(t), obtained in the
certain scaling limit of the spin-spin correlation function for the two-
dimensional Ising model on a square lattice, was. exactly computed.
The principal part of the function F(t) is. given by

s [(l_2(s))_(d__2(s)](7) F(t) expft,--[\ds]ldS, t’ 1--t’2
where 2 =(s) is a solution of Pm with

a==O, 7=1, 8= --1.
Pu in Hm of Table (H)

1
oo=]o=- 0o=--1, 0=0,

and consider the two polynomials defined by



No. 6] Polynomial Hamiltonians 267

( 8 ) H(t; ,/2)--HII ---1 (t; , Z)= -H(-t; , z).
4t

In this. case P remains invariant for the change of variable t-t,
and hence both H(t;,p) and H(t;2, p) are Hamiltonians. We can
deduce from (6)-(8)

F(t) r(t’)(t’), t’= t,
r and e denoting the r-unctions related to H and respectively.

As the second example we consider a one-dimensional N-body
problem in a periodic box, OgxL, with the Hamiltonian

8(--).

In [4], for he hermodynamie limi 0(1--’1) o he one ariele
density matrix a ero emperaure, the following expression was
given by

}( ) o(t)= ex
(-1) + +4 g,

where 2=2() is a solution of P wih
1 1=--, =-- =2
2 7=-2J-1’

Now le Hv be the Hamiltonian in Table (H) with
0==1, ,=-2-I, ,=0,

and put

(0) H(t , )=H(t , )+i--&.
t

Then it is not dicult to verify ha he integran of (9) coincides, with
(I0), hence he function defined by (9) is nohing bu the -funcion
relaed o he Hamilonian (10).

Remark 2. Consider he rational function of and ,
[ t lt 9(11) K= 1 2fi-3] +Y a a

and the Hamiltonian system (1) with the Hamiltonian (11). This.
system is equivalent to PHI, arising in the study of the two-dimensional
Ising model. Moreover, we have from (7)

(t)ex K(s; (),(s))g, t’= t.
Define he function e(t) by (6) wih H=K. I is no holomorhie on
III, while

The Hamilonian (11) is derived from he isomonodromie deformation
of a equation of he form

-(, t)z.
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6. Degeneration of the Hamiltonians. Let L(j be the linear
equation of the form (2) such that its isomonodromie deformation
induces the polynomial Hamiltonian H of Table (H). As is well-
known, the Painlev6 equation Pw yields the other five ones. by a process
of coalescence. This, fact stands also for the Hamiltonians, and the
process of step-by-step degeneration is carried out according to the
following scheme:

For example, in Hv replace t by l+t and Hv by -H(). This defines
a canonical transformation with the parameter . Moreover, if we
substitute ]-+0+ 1 for 0 and -]- for 0, H()(t 2,/) is holomorphic
in and Hv= H(0)(t 2,/). This replacement and succeeding limitation
cause simultaneously the confluence of the singular point x--t to x= 1,
hence the linear equation L(w) degenerates to L(v). We have L() (J= I

V) from L(vi) by the following process of step-by-step confluence of
singularities"

L(vi) ; L(v) L(II) "
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