
250 Proc. Japan Acad., 56, Set. A (1980) [Vol. 56(A),

On Functions of a Class of Painlev
Type Equations. I*

By Yasuko MORI
Department o.f Mathematics, Ryukyu University

(Communicated by KSsaku YOSIDA, M. J. A., June 12, 1980)

1. The aim of the present note is to give the description of
monodromy preserving deformation of a linear ordinary differential
equation of the form

(1) .PY =_ (x ff- +L ff-ff- +Mx+N)Y O

in a Hamiltonian form and to establish transformation formulas of the
associated ’r functions’ ([2]-[5]). Here the coefficients L, M and N are
constant matrices of size r while Y can be a column vector as well as
a square matrix of size r of functions o x. We assume that L (resp.
M) has distinct eigenvalues which we write -a (resp. -c), ]= 1, ..., r
so that -L (resp. --M) is conjugate to the diagonal matrix A
=(afl),=,...,r (resp. C=(cfi),=,...,). Hereafter we shall normalize
-L=QAQ-, -M=C so that we can write

(2) .F=Q(x-A)Q-( d

by setting B LM-N, B’=1+ML--N. We have
( 3 ) B’=lq-B-[QAQ-, C].
We also set" P=Q-B, E--(ce(,)c,,=x,...,r and B=QEP. By writing
our equation, _L’Y=0, as

d Y=(Q(x-A)-’P+C)Y(4)
dx

and observing (x-A)-=y__ (x-a)-E, we see that (1) is equivalent
to

(5) d y=( B+C)y, with B of rank<_X,
dx j=l

an equation with regular singularities at x=a, ..., a and an irregular
singularity of rank 1 at x-c. Note that the number of regular singu-
larities is equal to the size r.

Conversely, suppose we are given an equation (5) with rank of
B_I and C=(cfl) diagonal. Set 2=trace B which is an eigenvalue
of B, and define Q to be the matrix whose ]-th column vector [Q] is
the eigenvector of B belonging to the eigenvalue 2" B[Q]=,[Q].

*) This work was done while the author stayed at RIMS, Kyoto University
on leave of absence.
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Then we can set B=QEP, ]=1,..., r and P consists of row eigen-
vectors of B,...,B. Therefore the equation (5) is written as (4)
which is equivalent to (1). Hence (1) and (5) are equivalent to each
other.

We set A=(), K=() where ,..., denote diagonal ele-
ments o B (=Qp==r B) so that =r== ffor brevity we
write K=diagB to mean that K is the diagonal part of B).

As will be discussed in the subsequent note II, the case r=2 cor-
responds to the deformation theory leading to the Painlev equation
of the fifth kind.

Our strategy is first to endow the coefficient matrices Q and P in
(4) with a structure of canonical dynamical variables by defining their
Poisson bracket by
(6) {V,P}-, {Q, e}=0, {P, P}--0.
We denote by d the exterior differentiation with respect to A and C
and define a 1 orm w by

( 7 ) o(A, C) --1 j (PQ)j(PQ)d log (a-aj)+
i,
QPd(ac)

1 (QP)(QP)d log (c- c).+.
Then the deformation equations, which describe dependence o the
coefficient matrices B, ..., B o the equation (5) or Q, P of (4) on the
deformation parameters A and C, is given by
( 8 ) de {V, o}, dR= {P, o},

i.e. dQ Q(*
dP-- )*P-APdC-dA PC-PrO,

where t0 and tg* are defined by
(9) [, C]=[QP, dC], diag(9--0; [A, *]=[dA, PQ], diag tg*--0.

Indeed, the linear equation (4) _t:Y=0 with _L o (2) and the equation

(10) dY-YfY, =-QdA.Q-I( d
-f-c +xdC+O

are consistent under the conditions (8) because we have then
(11) d_L’=tg*_L’-_f:fi with fi*=ff-[QdA.Q-, C]-[QAQ-, dC].
Hence our ’Hamiltonian equations of motion’ (8) describe the deforma-
tion of (5) under which the monodromy structure is preserved. If Q
and P satisfy (8) the 1 form (A, C) of (7) is closed: do= 0. Hence the
function r(A, C) is well-defined uniquely up to a constant multiple by
(12) o(A, C)=d log r(A, C),
which we call the ’ function’ of (8), in accordance with [4], [5].

The equation (5) admits a local solution Y(x) at x=A and a formal
solution Y()(x) at x= oo of the following form:

(13) Y(x) Q Yn (x--A)z/n e-), Y0=1 (atx=A),
=o (A +n)
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Y()(x)=, Y()(x-A)-e, Y(o)=l (at x=c),
n----O

where the ]-th column vector of Y(x) is a local column vector solu-
tion at x=a having the exponent 2. The coefficients Y and Y) are
uniquely determined by
(14) (Y-Q-[C, QY_])(+n)-[A, Y+-Q-[C, QY]]=PQY,

Q (Y)(K n) + [Y+,() C])-[A, Q (Y:(K n+ 1) + [Y) C])]
=PY=).

The solutions (13) thus determined are shown to automatically
satisfy the deformation equation (10), and consistency of the supposi-
tions Y0 1 and Y)= 1 in (13) are verified also in the course.

We note that the diagonal parts of (14)0 give
(15) A diag PQ, K=diag QP,
while (8) together with (15) implies dA=O and dK=O. Namely ,
(= 1, ..., r) are the constants of integration of (8) as they should be.

It is manifest in (1)-(2) ha he formal Laplace ransformation
d d y(16)
dx dy

changes Y=0 into ((y-C)Q(-d/dy-A)-B’Q)Z=O with Z=Q-Y;
so we have

Theorem 1. By the formal Laplace transformation (16) the equa-
tion (4) is transformed into

(17) Z=((y--C)-P--A)Z with =Q-, P=-B’Q, Z=Q-.
dy

In place of (15) we have (from (3))
(18) diag=-(I+A), diag =-(I+K).

Namely the transformation means the replacement"
(9) (Q, P, A, C): (, P, C, -A).
We claim

Theorem 2. and constitute canonical transforms of Q and
P, and the deformation eqtions (8) stay invariant under the trans-

formation (19).
Since the same statement as Theorem 2 is obviously true with the

transformation
(20) (Q, P, A, C): )(P, Q, C, -A),
and since (19) is the composition of (20) and
(21) (Q, P, A, C): (-f, , A, C),
we see that Theorem 2 is reduced to the corresponding statement with
(21), or which we give a proof below.

2. Let us write (21) as (Q,P)(Q’, P’) by setting Q’=- and
P’=, or more explicitly
(22) Q’=(I+QP-[QAQ-, C])Q, P’=Q-
whose inverse transformation is given by
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(23) Q__p,-1, P=P’(-I+Q’P’+[P’-IAP’, C]).
For any expression F f(Q, P, A, C) we shall write F’-- f(Q’, P’, A, C)
for example for B-QP we write B’--Q’P’, in coincidence with (3).

From (7) and (22) we have the identity
(24) m’--o trace (QAQ-dC+Q-1CQdA),
and using this and (22) we also have
(25) (trace P’dQ’-w’)- (trace PdQ-(o)=dW, with

W= W(Q, Q’, A, C) =trace Q-(Q’-CQA)+log det Q.
Because of the independence of Q=P’- and Q’ (25) shows that the
transformation (22) is a canonical transformation. Therefore if Q and
P satisfy (8) then Q’ and P’ satisfy the same equations.

Now (18) reads
(26) A’ 1+ A, K’ 1 +K
namely, the constants of integration 2’s and r’s undergo simultaneous
increase by 1 under this transformation (22) of solutions of (8).

We now introduce the following transformation (an example of
Schlesinger’s transformation [1])
(27) Y’=Q(x-A)Q-Y,
whose inverse is given by

by virtue of the second expression of A: in (2). We have now
Theorem 3. By the Schlesinger transformation (27) the equations

(1) and (10) are transformed into _’Y’=O and dY’=9’Y’. More
specifically, the equation (4) and the solutions (13) arv transformed
respectively into

(29) dxd y,__(Q,(x_A)_p,+ c)y,= (,= x B’_ a-- +C) Y’,

(30) Y’(x)--Q’ Y’ (x-A)// ec(-) (at x=A)
:0 (1+]-.

Y()’(x)=] Y()’(x-A)I+K-ecx (at x=c),

where Q’, P’ are given by (22), and Y, Y)’ by

(31) Q’ ’=Y.= -Q(Y(I+A+n)--[A, Y/]), Yo 1;
YF)’= YF -Q[A, Q-Y(t], Y(o)’= 1.

We now proceed to the transformation formula to the r function.
We get dlog det Q=trace (QAQ-dC+Q-CQdA) by (8). Comparing
this with (24) we see d log r’-d log r=d log det Q, and obtain the fol-
lowing formula.

Theorem 4. We have, by suitably normalizing constant factors
of r functions,

and
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(32) det Q.

We denote by Q(),P(n),F(n)=f(Q(),P(),A, C) (resp. Y()) the
transforms of Q, P, F--.f(Q, P, A, C) (resp. Y) by (22) (resp. (27))
iterated n times whence diag P()Q() -n-+- A, diag Q()P() --n K.

We define an nr nr matrix R as ollows.
(33) R (R,),__0,,...,_
where R, are r r matrices given by
(34) R00=Q, Ro,+=CRo, R+,o=RoA,

j--1

R+,=RA+jR,_+,R,__PCQ (]=1, 2, 3,...).

For example
R

QA CQA+Q+QPQ CQA+2CQ+CQPQ+QPCQ
QA CQA +2QA+QPQA+QAPQ R,

R,=CQA +4CQA+2Q+CQPQA--CQAPQ+QPCQA+QAPCQ
+3QPQWQPQPQ.

Theorem ;. We have, by using the same normalization as in (32),
T(n)

(35) -det Rn.
T(0)

We can derive 2rom the definition (34)
(36) R

1. 1.. Q
Q’GAG-:"’... "’....

..o
Ql_ "1

.Q[QA-Q-.. "QA 1 Q(-’A(G(-’)- 1
1. 1 Q-’CQ...Q-’C-,Q

o

whence we have det R=det Q det Q’...det Q(-) which together with
Theorem 4 implies Theorem 5.

The inverse transformation (28) is rewritten as Q-Y=Q’-(d/dx
-C)Q’.Q’-Y which through the Laplace transformation (16) reads
(37) Z--’(y-C)((’)-’Z’ or

where we write ()=(Q())-=P(/, Z(=(Q())-Y in accordance
with the convention. It is now easy to see that the canonical trans-
formation (19) induces the transformation o associated quantities
(38) (Q() P()w(), ...).. >((-)P(-) (-)-Q(-) o(-) .)
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while (20) induces
(39) (Q, P,o), .)’.. ((-)P-, (-)-Q-, o)-’, .).
Specifically, if we set Q()=q(Q, P, A, C) and p(n)=p(Q, p, A, C) then
we have (__)np(-=q(p, _Q, C, -A) nd (-)-Q-=p(P, -Q, C,
-A). Similarly we get for n0

(-n)

(40) (__)((n-)/) --detR, with R(0)T

Let I=(i, ., i), I’=(i+, ., i) be ordered subsets of {1, 2, ., r}
complementary to each other. We denote by M,z=M(,,...,),(,,...,)
the minor of size k of a matrix M. (36) tells that p(n)=(Q(-))- is
the last rr block of R;. Using this fact and the formula" (M-),
=.((--)’+’/det M)M,,,, ]I]=i+ +i, we have
(41) T(n)" ,zD(n[=(--)ll+llr(O)’(Rn)(1,. (n-1)r,(n 1)r d’), (1,...,(n-1)r,(n 1) I’),

T(n) (n T(o)"I, "(Rn+)(,...,nr,nr+I),(,...,nr, nr+J),
where +I (1+ i, ., l+ i). Likewise we have
(42) T(-n) "I,s(-n) =(__) II I+l ]IT(0) (R)(1,...,(n-1)r,(n-1)r+s,),(,...,(n-1)r,(n-)r+I,),

T(-n) D(-n):T(0)(R51)(1, .,nr,nr+I),(1, nr, nr+J)LIJ

From these identities we conclude
Theorem 6. T(n)(n)-, and r()(n)-, (n=0, _+ 1, _+ 2, k=0, 1, r

with (I)=(J)) are all (multi-valued) holomorphic outside

_
where S is the union of the singularities of Q(),P() and
Note that both _(n)() and _(n)() reduce to () when k 0.

From (3)" Q’P’=I+QP-[QAQ-, C] and its variant" P’Q’=I+PQ
-[A, Q-CQ] we obtain

Corollary 7. If and ’ have no common divisor outside=S,
t.hen v()Q(n)P(n) and v()P(n)Q(n) are also holomorphic outside=S.
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