55. On F⁴-Manifolds and Cell-Like Resolutions

By Masaaki UE

Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1980)

1. Statement of results. For a compact metric space X of dimension n, "a cell-like resolution of X" is defined as a pair (M, f), consisting of an *n*-dimensional topological manifold M and a cell-like map $f: M \rightarrow X$. The purpose of this note is to announce a 4-dimensional version of resolution theorem of generalized manifolds, [1], [2], [5], [6], in terms of F-manifolds whose notion was introduced by Freedman and Quinn [3].

Definition [3]. A topological space M is said to be an F^4 -manifold, if it is an ENR homology 4-manifold with isolated 1-LC nonmanifold points, disjoint from the boundary. A topological space M is said to be an F^5 -manifold, if it is an ENR homology 5-manifold whose boundary is collared and is an F^4 -manifold, and whose interior is a topological manifold.

The notion of F-manifolds is "a workable substitute" for manifolds in dimension 4. (See [3].)

Main Theorem. Let X be a 1-connected closed homology 4manifold, whose nonmanifold set N(X) consists of isolated points. Suppose X-N(X) has a structure of a 1-connected smooth manifold, and $X \times \mathbf{R}$ is a 5-dimensional topological manifold. Then there exist a sequence of homology 4-manifolds and cell-like maps between them;

 $M_0 \xrightarrow{f_0} M_1 \xleftarrow{f_1} M_2 \xrightarrow{f_2} M_3 \xleftarrow{f_3} M_4 = X,$

where M_i is a homology 4-manifold $(i=1, \dots, 4)$, M_0 is an F^4 -manifold, and f_i is a cell-like map.

The following F^{5} -version of Quinn's thin h cobordism theorem is essential in proving the main theorem. For the terminology below see [3] and [5].

Theorem A. Let X be a locally compact metric space, C and D closed subsets of X with $C \supset D$, and ε a positive function on X. Suppose X is locally 1-connected near C^{2*} , where C^{2*} denotes the 2ε -neighborhood of C. Then there exists a positive function $\delta = \delta(X, C, D, \varepsilon)$ on X, having the following property (*).

(*) For any compact 1-connected F^{5} -manifold $(M, \partial_{0}M, \partial_{1}M)$ with 1-connected boundaries and any proper map $e: M \to X$, satisfying the condition (1)_s below, there are an F^{5} -manifold $(M', \partial_{0}M', \partial_{1}M')$ and a proper map $e': M' \to X$, satisfying the condition (2). (1)_s: $e^{-1}(C^*-D^{*/2})$ has a structure of a smooth manifold, $M, \partial_0 M$, and $\partial_1 M$ are $(\delta, 1)$ connected over C^* , and $(M, \partial_0 M)$ is a (δ, h) cobordism over C^{2*} and is a product over D^* with respect to e.

(2): e=e' over $D^{\epsilon} \cup \overline{X-C^{\epsilon}}$, there is an h cobordism between $\partial_{i}M$ and $\partial_{i}M'$, and $(M', \partial_{0}M')$ has a product structure over C with respect to e' which is an extension of the structure over D given in $(1)_{\delta}$.

Theorem A'. Suppose X, C, D and ε are as in Theorem A. Then there exists a $\delta > 0$, which has the following property (**).

(**) For any 1-connected F^{5} -manifold $(M, \partial_{0}M, \partial_{1}M)$ and any proper map $e: M \rightarrow X$, satisfying the condition $(1')_{\delta}$ below, M has a mapping cylinder structure over C of diameter less than ε , which is an extension of the one over D given in $(1')_{\delta}$.

 $(1')_{\delta}$: $e^{-1}(C^{*}-D^{*/2})$ has a structure of a smooth manifold, $M, \partial_{0}M$, and $\partial_{1}M$ are $(\delta, 1)$ connected over C^{*} , and $(M, \partial_{0}M)$ is a (δ, h) cobordism over C^{2*} and has a mapping cylinder structure of diameter less than δ over D^{*} , i.e., there are a homology 4-manifold N, cell-like maps $f_{i}:\partial_{i}M$ $\cap e^{-1}(D^{*}) \rightarrow N$, and a homeomorphism $h: e^{-1}(D^{*}) \cong M_{f_{0}} \bigcup_{N} M_{f_{1}}$, which is the identity on $\partial_{i}M \cap e^{-1}(D^{*})$.

Lemma. Suppose $(W, \partial_0 W, \partial_1 W)$ is a 1-connected F^5 -h cobordism. Then there is an arc k, such that $(W-k, \partial_0 W-k, \partial_1 W-k)$ has a structure of a smooth proper h cobordism. Moreover, for any $\delta > 0$ and any compact subset D of $[0, \infty)$, there exists a proper map $e: W-k \rightarrow [0, \infty)$, such that W-k is a (δ, h) cobordism over D with respect to e.

Using this lemma, we can show the following corollary, as an application of *Theorems A* and A'. (See [3].)

Corollary. Suppose $(W, \partial_0 W, \partial_1 W)$ is as in Lemma. Then W has a mapping cylinder structure. Moreover, there are an F⁵-manifold $(W', \partial_0 W', \partial_1 W')$, which is a product over D with respect to e given in Lemma, and an h cobordism between $(W, \partial_0 W, \partial_1 W)$ and $(W', \partial_0 W', \partial_1 W')$, which is a product outside D.

The following theorem is also used to prove the main theorem. (Cf. [3], Theorem 4.1.)

Theorem B. Let X be as in Main Theorem. Then for any compact neighborhood N of N(X), whose boundary components are 3manifolds, there exist a closed 1-connected F⁴-manifold M, a homeomorphism $f: M \cong \overline{X-N} \bigcup_{\delta N=\delta Q} Q$, where Q is some F⁴-manifold with boundary, and a homeomorphism $g: X \times R \cong M \times R$, such that $g|(\overline{X-N}) \times R \cong (f^{-1}|\overline{X-N}) \times id_R.$

2. Outline of the proof of Main Theorem. We may assume N(X) consists of a single point p. By the condition on X, there is a system $\{N_i\}_{i=0}^{\infty}$ of compact connected neighborhoods of p, such that N_i is contained in int N_{i-1} and is null homotopic in int N_{i-1} and $\bigcap_{i=0}^{\infty} N_i = \{p\}$.

236

No. 5]

By Theorem B, there are a 1-connected closed F^4 -manifold $M_i \cong \overline{X - N_i} \bigcup_{aN_i = aQ_i} Q_i$

and a homeomorphism $f_i: M_i \times R \cong X \times R$ $i=0, 1, \cdots$. For an appropriate sequence of positive numbers $0 < t_0 < t_1 < \cdots, t_n \rightarrow \infty$, we may assume $f_i(M_i \times [t_i, \infty))$ is contained in $f_{i-1}(M_{i-1} \times [t_{i-1}, \infty)) \cap X \times (0, \infty)$. Put $W_i = \overline{X \times R - f_{i+1}(M_{i+1} \times (t_{i+1}, \infty))} \cup \overline{f_i(M_i \times (t_i, \infty))}$. Then it is easily seen that $(W_i, \partial_0 W_i, \partial_1 W_i)$ is a 1-connected F^5 -h cobordism, which is a product over $\overline{X-N_i} \subset \partial_0 W_i$. By Corollary, we obtain a 1-connected F^{5-} h cobordism $(W'_i, \partial_0 W'_i, \partial_1 W'_i)$, which is a product over $\overline{X - N_{i+1}}$ for an appropriate map $e': W'_i \rightarrow X$. Moreover, there is an h cobordism between $(W_i, \partial_0 W_i, \partial_1 W_i)$ and $(W'_i, \partial_0 W'_i, \partial_1 W'_i)$ which is a product cobordism over $\overline{X-N_i}$. By continuing this process inductively, we can construct homology 4-manifolds \hat{M} and \hat{X} , and a cell-like map $f: \hat{X} \rightarrow \hat{M}$. Moreover, by the construction \hat{M} (resp. \hat{X}) is h cobordant to M_0 (resp. X). Therefore, by Corollary, we get a homology 4-manifold N (resp. Z) and cell-like maps $q': \hat{M} \to N$ and $q'': M_0 \to N$ (resp. $\hat{q}': \hat{X} \to Z$ and $\hat{q}'': X$ $\rightarrow Z$). Then after rewriting symbols, we get the required sequence of homology 4-manifolds and cell-like maps between them. The details of the proof will appear elsewhere.

References

- J. L. Bryant and J. G. Hollingsworth: Manifold factors that are manifold quotients. Topology, 13, 19-24 (1974).
- [2] J. W. Cannon, J. L. Bryant, and R. C. Lacher: The structure of generalized manifolds having nonmanifold set of trivial dimension. Geometric Topology. Academic Press, pp. 261-300 (1979).
- [3] M. Freedman and F. Quinn: A slightly singular 4-manifolds (to appear).
- [4] F. Quinn: The stable topology of 4-manifolds (to appear).
- [5] ——: Ends of maps I. Ann. Math., 110(2), 275-331 (1979).
- [6] ——: Resolutions of homology manifolds (an informal sketch).