45. A Remark on Ribet's Theorem

By Hajime Nakazato
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1980)

Introduction. Let p be an odd prime, ζ_{p} be a primitive p-th root of unity and A be the p-Sylow subgroup of the ideal class group of $\boldsymbol{Q}\left(\zeta_{p}\right)$. In [5], Ribet obtained a remarkable theorem on the structure of A as a Galois module by means of modular forms. We obtain a generalization of this Ribet's Theorem.

After this work had been finished, Prof. M. Koike kindly informed the auther that he had obtained a result on the existence of modular forms satisfying a certain congruence (Koike [8]). By using his decisive result, he obtained a desirable generalization of our theorem.

Notations. For a prime p, let $\overline{\boldsymbol{Q}}_{p}$ (resp. $\overline{\boldsymbol{Q}}$) be an algebraic closure of \boldsymbol{Q}_{p} (resp. \boldsymbol{Q}) and fix them. We fix embeddings $\overline{\boldsymbol{Q}} \rightarrow \boldsymbol{C}$ and $\overline{\boldsymbol{Q}} \rightarrow \overline{\boldsymbol{Q}}_{p}$, through which we regard elements of $\overline{\boldsymbol{Q}}$ as elements of C or $\overline{\boldsymbol{Q}}_{p}$. Let \mathfrak{p} be the prime of $\overline{\boldsymbol{Q}}$, lying above p, corresponding to the fixed embed$\operatorname{ding} \overline{\boldsymbol{Q}} \rightarrow \overline{\boldsymbol{Q}}_{p} . \quad$ For a finite abelian group G, let $\hat{G}=\operatorname{Hom}\left(G, \overline{\boldsymbol{Q}}^{\times}\right)$. For a positive integer n, let ζ_{n} be a primitive n-th root of unity in $\overline{\boldsymbol{Q}}$.
§ 1. Put $m=5,7$ or 11. Let p be an odd prime satisfying $(p, m \varphi(m))=1$, where φ is the Euler's φ-function. We use the following notations: $k=\boldsymbol{Q}(\cos (2 \pi / m)), H=\operatorname{Gal}(k / \boldsymbol{Q}), K=k\left(\zeta_{p}\right), G=\operatorname{Gal}(K / \boldsymbol{Q})$. Let ω be the Dirichlet character modulo p satisfying $\omega(\alpha) \equiv a \bmod \mathfrak{p}$ for all integers $a,(a, p)=1$. For $\phi \in \hat{G}$, we identify ϕ with the primitive Dirichlet character attached to ϕ by class field theory. Then

$$
\hat{G}=\left\{\psi \omega^{i} \mid \psi \in \hat{H}, i \bmod (p-1)\right\} .
$$

We say that $\phi \in \hat{G}$ is imaginary if ϕ (complex conjugation) $=-1$. Let \hat{G}^{-}be the set of imaginary characters of G. For a positive integer i and for $\phi \in \hat{G}$, let $B_{i}(\phi)$ be the i-th generalized Bernoulli number associated with ϕ. For $\phi \in \hat{G}$, let Φ be the \boldsymbol{Q}_{p}-irreducible character of a representation of G which has ϕ as a $\overline{\boldsymbol{Q}}_{p}$-irreducible component. Then the orthogonal idempotent $e(\Phi)$ attached to Φ lies in the group ring $\boldsymbol{Z}_{p}[G]$ since $(p,[K: Q])=1$. Let A be the p-Sylow subgroup of the ideal class group of K. We regard A as an additive group on which $Z_{p}[G]$ acts naturally.

Our main result is the following
Theorem 1. Let $\phi \in \hat{G}^{-}$. Then $B_{1}\left(\phi^{-1}\right) \equiv 0 \bmod \mathfrak{p}$ if and only if $e(\Phi) A \neq 0$. In other words, let $\psi \in \hat{H}$ and let i be an even integer with $2 \leqq i \leqq p-1$. Then $B_{i}\left(\psi^{-1}\right) \equiv 0 \bmod \mathfrak{p}$ if and only if $e\left(\Psi \omega^{1-i}\right) A \neq 0$, where
$\Psi \omega^{1-i}$ is the \boldsymbol{Q}_{p}-irreducible character of G which has $\psi \omega^{1-i}$ as a $\overline{\boldsymbol{Q}}_{p^{-}}$ irreducible component.

Remark 1. The first statement and the second one are equivalent since $i^{-1} B_{i}\left(\psi^{-1}\right) \equiv B_{1}\left(\psi^{-1} \omega^{i-1}\right) \bmod \mathfrak{p}(c f .2 .11$ of [1]).

Remark 2. Note that $e(\Phi) A$ depends only on Φ if we consider Φ as the corresponding character of $\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$. Hence Ribet's Theorem is equivalent to the second statement in the case of $\psi=$ the trivial character. To prove Theorem 1 we may assume that ψ is a primitive Dirichlet character modulo m.

Remark 3. The fact that $e(\Phi) A \neq 0$ implies $B_{1}\left(\phi^{-1}\right) \equiv 0 \bmod \mathfrak{p}$ is a result of the Stickelberger relations (cf. [3]).
§ 2. By Remark 2 in §1, we may assume that ψ is an even primitive Dirichlet character whose conductor is $m(=5,7$ or 11).

Lemma 1. Let $h_{p m}^{-}$be the imaginary factor (i.e. the first factor) of the class number of $\boldsymbol{Q}\left(\zeta_{p m}\right)$. If p is a prime such that $p \geqq \mathbf{5}$ and $p \neq m$. Then $h_{p m}^{-}<(4 p m)(p m / 24)^{\varphi(p m) / 4}$.

Proof. By the class number formula, we have

$$
\left(h_{\overline{p m}}^{-}\right)^{2}=(4 p m)^{2} \prod_{\phi}\left|-2^{-1} B_{1}(\phi)\right|^{2}=(4 p m)^{2}(2 p m)^{-\varphi(p m) / 2} \prod_{\phi}\left|\sum_{a=1}^{p m-1} \phi(a) a\right|^{2}
$$

Here ϕ runs over all odd primitive Dirichlet characters whose conductors divide pm . By the arithmetical-geometical mean inequality, we have

$$
\left(\prod_{\phi}\left|\sum_{a} \phi(a) a\right|^{2}\right)^{2 / \varphi(n m)} \leqq(2 / \varphi(p m)) \sum_{\phi}\left|\sum_{a} \phi(a) a\right|^{2}
$$

By a calculation (cf. [4]), we obtain

$$
\begin{aligned}
& (2 / \varphi(p m)) \sum_{\phi}\left|\sum_{a} \phi(a) a\right|^{2}=(2 / \varphi(p m)) \sum_{a, b=1}^{p m-1} \sum_{\phi} \phi(a) \overline{\phi(b)} a b \\
& \quad<6^{-1} p m(p m-1)(p m-2) \\
& \quad \quad-p m(p m-4 p-4 m)\left\{p(m-1)^{2}+m(p-1)^{2}\right\}(p-1)^{-1}(m-1)^{-1} \\
& \quad<6^{-1}(p m)^{3} .
\end{aligned}
$$

Combining these estimations, we have Lemma 1.
We note that the norm of $B_{2}(\psi)$ from \boldsymbol{Q} (values of ψ) to \boldsymbol{Q} is $2^{2} \cdot 5^{-1}$ (resp. $2^{4} \cdot 7^{-1}, 2^{8} \cdot 5 \cdot 11^{-1}$) if $m=5$ (resp. 7,11). Hence we may assume that $4 \leqq i \leqq p-1$. Put $\varepsilon=\psi^{-1} \omega^{i-2}$. Then ε is primitive and its conductor is $p m$.

As in the proof of Theorem (3.3) of [5], we have:
Lemma 2. There exists a modular form of weight 2 and type ε on $\Gamma_{0}(p m)$ whose Fourier-expansion coefficients are \mathfrak{p}-integers in $\overline{\boldsymbol{Q}}$ and whose constant term is 1 .

Put

$$
G_{2, \epsilon}(z)=-\frac{1}{4} B_{2}(\varepsilon)+\sum_{n=1}^{\infty}\left(\sum_{a \mid n, d>0} \varepsilon(d) d\right) \exp (2 \pi \sqrt{-1} n z)
$$

This is an Eisenstein series of weight 2 and type ε on $\Gamma_{0}(p m)$. Note that $2^{-1} B_{2}(\varepsilon) \equiv i^{-1} B_{i}\left(\psi^{-1}\right) \equiv B_{1}\left(\psi^{-1} \omega^{i-1}\right) \bmod \mathfrak{p}$.

As in the proof of Proposition (3.5) of [5], we obtain the following
Theorem 2. Suppose that $B_{i}\left(\psi^{-1}\right) \equiv 0 \bmod \mathfrak{p}$. Then there exists a cusp form f of weight 2 and type ε on $\Gamma_{0}(p m)$ which satisfies the following conditions:
i) f is a normalized common eigen-form for all Hecke operators.
ii) $f \equiv G_{2, s} \bmod \mathfrak{p}$ in Fourier-expansions.
§3. In this section, under the same assumption as in §2, we regard $\phi($ resp. $\tilde{\phi})$ as the character of $\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ via the natural projection (resp. the reduction of ϕ i.e. the $\operatorname{map} x \mapsto \phi(x) \bmod \mathfrak{p}$).

Theorem 3. Suppose that there exists a cusp form f satisfying the conditions in Theorem 2. Then there exists a finite field $\boldsymbol{F} \supset \boldsymbol{F}_{p}$ and a continuous representation

$$
\tilde{\rho}: \operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q}) \rightarrow \mathrm{GL}(2, \boldsymbol{F})
$$

which has the following properties:
i) $\left.\tilde{\rho}\right|_{G a 1(\bar{Q} / K)}$ is unramified outside the set of primes of K lying above p.
ii) $\tilde{\rho}$ is reducible over \boldsymbol{F} in such a way that $\tilde{\rho}$ is isomorphic to a representation of the form

$$
\left(\begin{array}{ll}
1 & * \\
0 & \tilde{\phi}^{-1}
\end{array}\right) .
$$

iii) $\tilde{\rho}$ is not diagonalizable.
iv) Let D be a decomposition group for p in $\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$. Then the order of $\tilde{\rho}(D)$ is prime to p.

This theorem is proved by the same argument as in [5]. We note the following points. (This theorem is known to specialists.)

1) Let X be an abelian variety attached to f (cf. [7, Theorem 7.14]). Then X has everywhere good reduction over the maximal real subfield K^{+}of K since ε is primitive and $p m$ is square free (cf. [2, Exemples 3.7, (iii)]).
2) Using the Tate module of X, we have a continuous representation of Gal ($\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ over a certain local field. This representation is irreducible (cf. [6, Theorem (2.3)]).
3) Let E be the completion of K^{+}at $\mathfrak{p} \cap K^{+}$. Then its absolute ramification index is $(p-1) / 2$. Hence we can apply Proposition (4.3) and Theorem (4.4) of [5].

Using Theorem 3, we obtain the following
Theorem 4. Suppose that there exists a cusp form f satisfying the conditions in Theorem 2. Then $e(\Phi) A \neq 0$.

Now we obtain Theorem 1 by using Remark 3 in §1, Theorems 2 and 4.
§4. We have an application of Theorem 1. For $\phi \in \hat{G}^{-}$, let L_{ϕ} be the field generated by the values of ϕ over $\boldsymbol{Q}_{p}, \mathfrak{D}_{\phi}$ be its integer ring and \mathfrak{p}_{ϕ} be its maximal ideal. For $\phi \in \hat{G}^{-}$, put $n(\phi)=\operatorname{ord}_{p_{\phi}} B_{1}\left(\phi^{-1}\right)$ if $\phi \neq \omega$
and $n(\omega)=0$.
Proposition. Under the same assumption as Theorem 1, if $n(\phi)$ $\leqq 1$ for each $\phi \in \hat{G}^{-}$, then $e(\Phi) A$ is isomorphic to $\mathfrak{D}_{\phi} / \mathfrak{p}_{\phi}^{n(\phi)}$ for each $\phi \in \hat{G}^{-}$. This proposition is proved by using Theorem 1, the class number formula and the Stickelberger relations (cf. [3]).

Acknowledgements. The author would like to thank Profs. M. Koike and K. A. Ribet for their comments on Theorem 2.

References

[1] J. Coates and S. Lichtenbaum: On l-adic zeta functions. Ann. of Math., 98, 498-550 (1973).
[2] P. Deligne and M. Rapoport: Les schémas de modules de courbes ellipitiques. Lect. Notes in Math., vol. 349, pp. 143-316, Berlin-Heidelberg-New York, Springer (1973).
[3] G. Gras: Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés. Ann. Inst. Fourier, Grenoble, 27, 1-66 (1977).
[4] T. Metsänkylä: Class numbers and μ-invariants of cyclotomic fields. Proc. Amer. Math. Soc., 43, 299-300 (1974).
[5] K. A. Ribet: A modular construction of unramified p-extensions of $\boldsymbol{Q}\left(\mu_{p}\right)$. Invent. math., 34, 151-162 (1976) .
[6] -: Galois representations attached to eigenforms with Nebentypus. Lect. Notes in Math., vol. 601, pp.17-52, Berlin-Heidelberg-New York, Springer (1977).
[.7] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, 11, Iwanami Shoten-Princeton University Press, Tokyo-Princeton (1971).
[8] M. Koike: A Note on Modular Forms mod p. Proc. Japan Acad., 55A (8), 313-315 (1979).

