44. On Formal Analytic Poincaré Lemma*

By Akira FUJIKI

Research Institute for Mathematical Sciences, Kyoto University (Communicated by Kunihiko Kodaira, M. J. A., April 12, 1980)

- 1. Introduction. Let X be a complex manifold and Y an analytic subset of X. Let Ω_X be the complex of sheaves of germs of holomorphic forms on X and $\hat{\Omega}_X$ the formal completion of Ω_X along Y (cf. [4]). Then the formal analytic Poincaré lemma says that $\hat{\Omega}_X$ gives a resolution of C_Y with respect to the natural augmentation $C_Y \to \hat{\Omega}_X$. This was first shown by Hartshorne [4] and Sasakura [5] independently. Actually, Sasakura obtained a stronger result using his theory of stratifying analytic sets and of cohomology with growth conditions [5]. In the present note we shall give a simple alternative proof of his result using resolution, based on the idea of Bloom (cf. [2, 3.1]).
- 2. Statement of the result. Let U=X-Y and $j:U\to X$ be the inclusion. Let I be any coherent sheaf of ideals of O_X with supp $O_X/I=Y$ where supp denotes the support. We call an open subset V of X good with respect to Y if V is Stein, its closure \overline{V} is a Stein compact, and if the restriction map $j^*: H^i(V,C)\to H^i(Y\cap V,C)$ are isomorphic for all i, or equivalently, $H^i_{\overline{V}}(V-V\cap Y,C)=0$ for all i, where \overline{V} is the family of supports consisting of closed subsets of V which are contained in $V-V\cap Y$. In what follows for a rational number r we denote by [r] the largest integer which is not greater than r, and then we write $[r]_+=\max{([r],0)}$.

Theorem. Let V be an open subset of X which is good with respect to Y. Then there exist rational numbers c_1 , c_2 with $c_1 > 0$ such that if we put $c(m) = [c_1m - c_2]_+$ for any integer m, then the following hold true: 1) For every p > 0 and $\varphi \in \Gamma(V, I^m \Omega_X^p)$ with $d\varphi = 0$ we can find a $\psi \in \Gamma(V, I^{c(m)} \Omega_X^{p-1})$ such that $\varphi = d\psi$. 2) Suppose further that V is contractible. Then for every $p \ge 0$ and every $\varphi \in \Gamma(V, \Omega_X^p)$ with $d\varphi \in \Gamma(V, I^m \Omega_X^{p+1})$ we can find a $\psi \in \Gamma(V, \Omega_X^{p-1})$ such that $\varphi - d\psi \in \Gamma(V, I^{c(m)} \Omega_Y^p)$, where $\Omega_X^{-1} = C_X$ and $d: \Omega_X^{-1} \to O_X$ is the natural inclusion.

The formal Poincaré analytic lemma mentioned above follows from 2) of the above theorem together with the following:

Remark. For each $y \in Y$ there exists a fundamental system $\{V\}$ of contractible open neighborhoods V of y in X which are good with respect to Y. In fact, since the problem is local, we may assume that $X = C^n := C^n(z_1, \dots, z_n)$ where $n = \dim X$. Let $r = \sum_{i=1}^n |z_i|^2$ and $D_{\epsilon} = \{r < \epsilon\}$

^{*} Supported by the Sakkokai Foundation.

for $\varepsilon > 0$. Then it suffices to take $\{V\} = \{D_{\varepsilon}\}_{\varepsilon < \varepsilon_0}$ for some sufficiently small $\varepsilon_0 > 0$. Indeed, then we have only to see that $D_{\varepsilon} \cap Y$, $\varepsilon < \varepsilon_0$, is contractible, which is a consequence of Thom-Mather's theory (cf. [3, Chap. II, Theorem 5.4]).

3. Proof of Theorem. 2) follows from 1) as follows. Put $\eta = d\varphi$. Then $d\eta = 0$ so that by 1) there exists a $\xi \in \Gamma(V, I^{c(m)}\Omega_X^p)$ such that $\eta = d\xi$. Then $d(\varphi - \xi) = 0$, so we get a $\psi \in \Gamma(V, \Omega_X^{p-1})$ such that $d\psi = \varphi - \xi$ since V is Stein and contractible. Hence $\varphi - d\psi = \xi \in \Gamma(V, I^{c(m)}\Omega_X^p)$.

Next we show 1). Take by Hironaka a proper bimeromorphic morphism $f: \tilde{X} \to X$ with \tilde{X} nonsingular and $\tilde{Y}:=f^{-1}(Y)$ a divisor with only normal crossings in \tilde{X} , such that $f|_{\tilde{X}-\tilde{Y}}: \tilde{X}-\tilde{Y} \to X-Y$ is isomorphic. We may further assume that on the closure \overline{V} of V, f is obtained by blowing up of a coherent analytic sheaf I' of ideals of O_X with supp $O_X/I'=Y$.

We first consider the case where I=I' and show that in this case 1) is true with $c_1=1$. We put $\tilde{I}=f^{-1}(I')$ $(=I'O_{\tilde{X}})$. Then \tilde{I} is f-very ample on \overline{V} . Let $\tilde{\varphi}=\varphi f$. Then $\tilde{\varphi}\in \Gamma(\tilde{V},\tilde{I}^m\Omega_{\tilde{X}}^p)$ and $d\tilde{\varphi}=0$, where $\tilde{V}=f^{-1}(V)$. Then the main point of our proof is to show the following: (+) There exists an integer m_0 such that once $m\geq m_0$, then we can always find a $\tilde{\psi}\in\Gamma(\tilde{V},\tilde{I}^{m-p}\Omega_{\tilde{X}}^{p-1})$ such that $d\tilde{\psi}=\tilde{\varphi}$.

First we define a subcomplex K_m of Ω_X by

$$K_m = \tilde{I}^{m+1} \Omega_{\tilde{X}} + \tilde{I}^m d\tilde{I} \wedge \Omega_{\tilde{X}}^{-1}.$$

Then we put $\Omega_{\tilde{T}(m)} = \Omega_{\tilde{X}} / K_m$, where $\tilde{Y}_{(m)}$ is the complex subspace of \tilde{X} defined by the ideal \tilde{I}^{m+1} . We then have the obvious exact sequence of complexes

$$(1) 0 \rightarrow K_m \rightarrow \Omega_{\tilde{X}} \rightarrow \Omega_{\tilde{Y}(m)} \rightarrow 0.$$

On the other hand, by Reiffen (cf. [2, 3.1]), for every $m \ge 1$ (1) is a resolution of the following exact sequence of sheaves of C-vector spaces

$$(2) 0 \rightarrow \tilde{j}_{1}C_{\tilde{v}} \rightarrow C_{\tilde{x}} \rightarrow C_{\tilde{y}} \rightarrow 0$$

with respect to the natural augmentation from (2) to (1), where $\tilde{U} = \tilde{X} - \tilde{Y}$ and $\tilde{j} \colon \tilde{U} \to \tilde{X}$ is the inclusion. From (1) and (2) we get on $\tilde{V} = f^{-1}(V)$ the following commutative diagram of hypercohomology exact sequences

where the vertical arrows are isomorphic and $\tilde{\Psi} = f^{-1}(\Psi)$. Since V is good, $H^q_{\widetilde{\Psi}}(\tilde{V} - \tilde{V} \cap \tilde{Y}, C) \cong H^q_{\widetilde{\Psi}}(V - Y \cap V, C) = 0$. Now we consider for each m the spectral sequence of hypercohomology associated to the complex K_m

$$E_1^{p,q}(m) = H^q(\tilde{V}, K_m^p) \Rightarrow H^{p+q}(\tilde{V}, K_m) \cong H_{\widetilde{\pi}}^{p+q}(\tilde{V} - \tilde{V} \cap \tilde{Y}, C) = 0.$$

Corresponding to the natural inclusions $K_m \subseteq K_m$, $m \ge m'$, we have the natural maps of the spectral sequences

$$\alpha_r^{p,q}(m,m'): E_r^{p,q}(m) \rightarrow E_r^{p,q}(m'), \qquad m \ge m'.$$

Then we shall prove the following: (") If m is sufficiently large, then $\alpha_r^{p,q}(m,m-1)$ are zero maps for all $r \ge 1$ and $q \ge 1$. In fact, by the definition of K_m^p we obtain the exact sequence

$$0 \rightarrow \tilde{I}^{m+1}\Omega_{\tilde{X}}^p \rightarrow K_m^p \rightarrow K_m^p / \tilde{I}^{m+1}\Omega_{\tilde{X}}^p \rightarrow 0.$$

Since \tilde{I} is f-very ample on \overline{V} and V is Stein, using Leray spectral sequence for f we have $H^q(\tilde{V}, \tilde{I}^{m+1}\Omega_x^p) = 0$ for all sufficiently large m and $q \ge 1$. Hence we get the natural isomorphisms

$$H^q(\tilde{V},K_m^p) \cong H^q(\tilde{V},K_m^p/\tilde{I}^{m+1}\Omega_{\tilde{X}}^p)$$

for sufficiently large m and $q \ge 1$. On the other hand, since the compositions $K^p_{m+1} \to K^p_m \to K^p_m / \tilde{I}^{m+1} \Omega^p_{\tilde{X}}$ are zero maps, from the above isomorphisms we get that the natural maps $H^q(\tilde{V}, K^p_{m+1}) \to H^q(\tilde{V}, K^p_m)$ are all zero maps. Namely $\alpha_1^{p,q}(m,m-1)$ are zero maps and a fortiori $\alpha_r^{p,q}(m,m-1)$ are zero maps for $r \ge 2$ for sufficiently large m and all $q \ge 1$, which proves ("). Using (") we next prove the following:

Assertion. $\alpha_2^{p,0}(m, m-p+1): E_2^{p,0}(m) \rightarrow E_2^{p,0}(m-p+1)$ are zero maps for all sufficiently large m and all p>0.

Proof. It is enough to prove the following assertion (*) by descending induction on $i: (*) \alpha_i^{p,0}(m,m-p+i-1): E_i^{p,0}(m) \to E_i^{p,0}(m-(p-i+1))$ are zero maps for $p \ge i \ge 2$. (The case i=2 corresponds to the above assertion.) We shall denote by $d_i^{p,q}(m): E_i^{p,q}(m) \to E_i^{p+i,q-i+1}(m)$ the differentials of the spectral sequences. Suppose first that i=p. Then we have the natural isomorphisms $E_p^{p,0}(m) \cong \cdots \cong E_p^{p,0}(m)$ and the natural inclusion $E_p^{p,0}(m) \subseteq H^p(\tilde{V}, K_m)$. Since $H^p(\tilde{V}, K_m) = 0$ as was remarked above, we have $E_p^{p,0}(m) = 0$. Hence (*) is true in this case. Next suppose that (*) is true for some i > 2, so that we have $\alpha_i^{p,0}(m,m-p+i-1)E_i^{p,0}(m) = 0$, i.e.,

$$\alpha_{i-1}^{p,0}(m,m-p+i-1)E_{i-1}^{p,0}(m) \\ \subseteq d_{i-1}^{p-i+1,i-2}(m-p+i-1)(E_{i-1}^{p-i+1,i-2}(m-p+i-1))$$

From this it follows that

where the last equality comes from (") since i-2>0 and m-p+i-1 is sufficiently large if m is. This proves (*) for i-1 and hence completes the inductive proof of (*), and hence of the assertion also.

The above assertion is equivalent to saying that the natural maps $\alpha_p(m): H^p\Gamma(\tilde{V}, K_m^{\cdot}) \to H^p\Gamma(\tilde{V}, K_{m-p+1}^{\cdot})$ induced by the inclusions $K_m^{\cdot} \subseteq K_{m-p+1}^{\cdot}$ are zero maps for all sufficiently large m and all p>0. Now coming back to our $\tilde{\varphi}$, let $\bar{\varphi} \in H^p\Gamma(\tilde{V}, K_{m-1}^{\cdot})$ be the class defined by $\tilde{\varphi}$. Then if m is sufficiently large, $\alpha_p(m-1)\bar{\varphi}=0$ so that there exists a $\psi \in \Gamma(\tilde{V}, K_{m-p}^{p-1})$ such that $\tilde{\varphi} = d\tilde{\psi}$. On the other hand, since $K_{m-p}^{\cdot} \subseteq \tilde{I}^{m-p}\Omega_{\tilde{X}}^{\cdot}$, $\tilde{\psi} \in \Gamma(\tilde{V}, \tilde{I}^{m-p}\Omega_{\tilde{X}}^{p-1})$. This proves (+).

From (+) we shall deduce our conclusion as follows. First note that for any coherent analytic sheaf F on \tilde{X} there exists an integer d>0 such that for each k>0 the natural map $I^kf_*(\tilde{I}^dF)\to f_*(\tilde{I}^{d+k}F)$ is isomorphic. In fact, noting that $\tilde{X}\cong \operatorname{Projan}(\bigoplus_{\nu\geq 0}^\infty I^\nu)$ over V [1] this follows from the corresponding algebraic result (cf. EGA III 2.3.2) by the comparison theorems in Bingener [1]. We apply this to $F=Q_X^q$, $0\leq q\leq \dim X$, and obtain an integer d>0 independent of q such that

$$f_*(\tilde{I}^{d+k}\Omega_{\tilde{X}}^q) \cong I^k f_*(\tilde{I}^d\Omega_{\tilde{X}}^q) \subseteq I^k f_*(\Omega_{\tilde{X}}^q) \cong I^k \Omega_{\tilde{X}}^q$$

and hence $\Gamma(\tilde{V}, \tilde{I}^{a+k}\Omega_X^a) \subseteq \Gamma(V, I^k\Omega_X^a)$. Therefore if $\psi \in \Gamma(V, I^{m-p-d}\Omega_X^{p-1})$ corresponds to the above $\tilde{\psi}$ by this inclusion we have $\varphi = d\psi$. Thus if we set $c_1 = 1$ and $c_2 = p + d$ then 1) is true for all sufficiently large m. Then taking c_2 larger 1) holds for all m > 0.

Next in the general case fix positive integers s and t such that $I^s \subseteq I'$ and $I'^t \subseteq I$ on \overline{V} , which is possible by Hilbert zero theorem. Then by what we have proved above (applied to I') we see readily that there exist an integer c and a $\psi \in \Gamma(V, I^n \Omega_X^{p-1})$ with $d\psi = \varphi$ where $n = [(m_1 - c)/t]_+$, $m_1 = [m/s]$. Since $n \ge (m/ts) - (c/t) - 4$, if we set $c_1 = 1/ts$ and $c_2 = -((c/t) + 4)$, $\psi \in \Gamma(V, I^{c(m)} \Omega_X^{p-1})$. Q.E.D.

References

- [1] J. Bingener: Schemata über Steinschen Algebren. Schriftenreihe des Math. Inst. der Univ. Münster, 2, Serie, Heft 10 (1976).
- [2] E. Brieskorn: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta Math., 2, 103-161 (1970).
- [3] C. G. Gibson et al.: Topological stability of smooth mappings. Lect. Notes in Math., vol. 552, Springer Verlag, Berlin-Heidelberg-New York (1976).
- [4] R. Hartshorne: De Rham cohomology of algebraic varieties. Publ. Math. IHES, 45, 5-99 (1975).
- [5] N. Sasakura: Cohomology with polynomial growth and completion theory. Publ. RIMS, Kyoto Univ. (to appear).